BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 17207284)

  • 1. Discovering biomarkers from gene expression data for predicting cancer subgroups using neural networks and relational fuzzy clustering.
    Pal NR; Aguan K; Sharma A; Amari S
    BMC Bioinformatics; 2007 Jan; 8():5. PubMed ID: 17207284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fuzzy logic selection as a new reliable tool to identify molecular grade signatures in breast cancer--the INNODIAG study.
    Kempowsky-Hamon T; Valle C; Lacroix-Triki M; Hedjazi L; Trouilh L; Lamarre S; Labourdette D; Roger L; Mhamdi L; Dalenc F; Filleron T; Favre G; François JM; Le Lann MV; Anton-Leberre V
    BMC Med Genomics; 2015 Feb; 8():3. PubMed ID: 25888889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An online tool for evaluating diagnostic and prognostic gene expression biomarkers in bladder cancer.
    Dancik GM
    BMC Urol; 2015 Jul; 15():59. PubMed ID: 26126604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFP: a Bioconductor package for fuzzy profile identification and gene reduction of microarray data.
    Glez-Peña D; Alvarez R; Díaz F; Fdez-Riverola F
    BMC Bioinformatics; 2009 Jan; 10():37. PubMed ID: 19178723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsupervised fuzzy pattern discovery in gene expression data.
    Wu GP; Chan KC; Wong AK
    BMC Bioinformatics; 2011; 12 Suppl 5(Suppl 5):S5. PubMed ID: 21989090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydra: A mixture modeling framework for subtyping pediatric cancer cohorts using multimodal gene expression signatures.
    Pfeil J; Sanders LM; Anastopoulos I; Lyle AG; Weinstein AS; Xue Y; Blair A; Beale HC; Lee A; Leung SG; Dinh PT; Shah AT; Breese MR; Devine WP; Bjork I; Salama SR; Sweet-Cordero EA; Haussler D; Vaske OM
    PLoS Comput Biol; 2020 Apr; 16(4):e1007753. PubMed ID: 32275708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple fuzzy neural network system for outcome prediction and classification of 220 lymphoma patients on the basis of molecular profiling.
    Ando T; Suguro M; Kobayashi T; Seto M; Honda H
    Cancer Sci; 2003 Oct; 94(10):906-13. PubMed ID: 14556665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-Aided Diagnosis of Acute Lymphoblastic Leukaemia.
    Shafique S; Tehsin S
    Comput Math Methods Med; 2018; 2018():6125289. PubMed ID: 29681996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. biDCG: a new method for discovering global features of DNA microarray data via an iterative re-clustering procedure.
    Chen CP; Fushing H; Atwill R; Koehl P
    PLoS One; 2014; 9(7):e102445. PubMed ID: 25047553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data.
    Withnell E; Zhang X; Sun K; Guo Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34402865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ECMarker: interpretable machine learning model identifies gene expression biomarkers predicting clinical outcomes and reveals molecular mechanisms of human disease in early stages.
    Jin T; Nguyen ND; Talos F; Wang D
    Bioinformatics; 2021 May; 37(8):1115-1124. PubMed ID: 33305308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer learning of classification rules for biomarker discovery and verification from molecular profiling studies.
    Ganchev P; Malehorn D; Bigbee WL; Gopalakrishnan V
    J Biomed Inform; 2011 Dec; 44 Suppl 1(0 1):S17-S23. PubMed ID: 21571094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finding groups in gene expression data.
    Hand DJ; Heard NA
    J Biomed Biotechnol; 2005 Jun; 2005(2):215-25. PubMed ID: 16046827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the necessity to include multiple types of evidence when predicting molecular function of proteins.
    de Crécy-Lagard V; Swairjo MA
    bioRxiv; 2023 Dec; ():. PubMed ID: 38187591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discover immunotherapy biomarkers from single-cell cytometry data.
    Ru B; Jiang P
    Patterns (N Y); 2021 Dec; 2(12):100384. PubMed ID: 34950905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OncoRTT: Predicting novel oncology-related therapeutic targets using BERT embeddings and omics features.
    Thafar MA; Albaradei S; Uludag M; Alshahrani M; Gojobori T; Essack M; Gao X
    Front Genet; 2023; 14():1139626. PubMed ID: 37091791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of plasma biomarker-derived clusters for clinicopathologic phenotyping: results from the Boston Kidney Biopsy Cohort.
    Schmidt IM; Myrick S; Liu J; Verma A; Srivastava A; Palsson R; Onul IF; Stillman IE; Avillach C; Patil P; Waikar SS
    Clin Kidney J; 2023 Jan; 16(1):90-99. PubMed ID: 36726432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning Methods for Predicting Disease Status Using Genomic Data.
    Wu Q; Boueiz A; Bozkurt A; Masoomi A; Wang A; DeMeo DL; Weiss ST; Qiu W
    J Biom Biostat; 2018; 9(5):. PubMed ID: 31131151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of Biomarker Clusters With Cardiac Phenotypes and Mortality in Patients With HIV Infection.
    Scherzer R; Shah SJ; Secemsky E; Butler J; Grunfeld C; Shlipak MG; Hsue PY
    Circ Heart Fail; 2018 Apr; 11(4):e004312. PubMed ID: 29615435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kernel Based Nonlinear Dimensionality Reduction and Classification for Genomic Microarray.
    Li X; Shu L
    Sensors (Basel); 2008 Jul; 8(7):4186-4200. PubMed ID: 27879930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.