BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 19340490)

  • 1. The robotic mouse: understanding the role of AF4, a cofactor of transcriptional elongation and chromatin remodelling, in purkinje cell function.
    Bitoun E; Davies KE
    Cerebellum; 2009 Sep; 8(3):175-83. PubMed ID: 19340490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The robotic mouse: unravelling the function of AF4 in the cerebellum.
    Bitoun E; Davies KE
    Cerebellum; 2005; 4(4):250-60. PubMed ID: 16321881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling.
    Bitoun E; Oliver PL; Davies KE
    Hum Mol Genet; 2007 Jan; 16(1):92-106. PubMed ID: 17135274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mutation in Af4 is predicted to cause cerebellar ataxia and cataracts in the robotic mouse.
    Isaacs AM; Oliver PL; Jones EL; Jeans A; Potter A; Hovik BH; Nolan PM; Vizor L; Glenister P; Simon AK; Gray IC; Spurr NK; Brown SD; Hunter AJ; Davies KE
    J Neurosci; 2003 Mar; 23(5):1631-7. PubMed ID: 12629167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AF4 is a critical regulator of the IGF-1 signaling pathway during Purkinje cell development.
    Bitoun E; Finelli MJ; Oliver PL; Lee S; Davies KE
    J Neurosci; 2009 Dec; 29(49):15366-74. PubMed ID: 20007461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mediation of Af4 protein function in the cerebellum by Siah proteins.
    Oliver PL; Bitoun E; Clark J; Jones EL; Davies KE
    Proc Natl Acad Sci U S A; 2004 Oct; 101(41):14901-6. PubMed ID: 15459319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of human neurological disorders using mutagenesis in the mouse.
    Oliver PL; Davies KE
    Clin Sci (Lond); 2005 May; 108(5):385-97. PubMed ID: 15831088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered synaptic and firing properties of cerebellar Purkinje cells in a mouse model of ARSACS.
    Ady V; Toscano-Márquez B; Nath M; Chang PK; Hui J; Cook A; Charron F; Larivière R; Brais B; McKinney RA; Watt AJ
    J Physiol; 2018 Sep; 596(17):4253-4267. PubMed ID: 29928778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autonomous Purkinje cell axonal dystrophy causes ataxia in peroxisomal multifunctional protein-2 deficiency.
    De Munter S; Bamps D; Malheiro AR; Kumar Baboota R; Brites P; Baes M
    Brain Pathol; 2018 Sep; 28(5):631-643. PubMed ID: 29341299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abnormalities in cerebellar Purkinje cells in the novel ataxic mutant mouse, pogo.
    Jeong YG; Hyun BH; Hawkes R
    Brain Res Dev Brain Res; 2000 Dec; 125(1-2):61-7. PubMed ID: 11154761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein network study of human AF4 reveals its central role in RNA Pol II-mediated transcription and in phosphorylation-dependent regulatory mechanisms.
    Esposito G; Cevenini A; Cuomo A; de Falco F; Sabbatino D; Pane F; Ruoppolo M; Salvatore F
    Biochem J; 2011 Aug; 438(1):121-31. PubMed ID: 21574958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragile XE-associated familial mental retardation protein 2 (FMR2) acts as a potent transcription activator.
    Hillman MA; Gecz J
    J Hum Genet; 2001; 46(5):251-9. PubMed ID: 11355014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purkinje cell degeneration in pcd mice reveals large scale chromatin reorganization and gene silencing linked to defective DNA repair.
    Baltanás FC; Casafont I; Lafarga V; Weruaga E; Alonso JR; Berciano MT; Lafarga M
    J Biol Chem; 2011 Aug; 286(32):28287-302. PubMed ID: 21700704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosome 16q22.1-linked autosomal dominant cerebellar ataxia: an autopsy case report with some new observations on cerebellar pathology.
    Shintaku M; Kaneda D
    Neuropathology; 2009 Jun; 29(3):285-92. PubMed ID: 18627481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of the AFF (AF4/FMR2) family of RNA-binding proteins: insights into the molecular pathology of FRAXE intellectual disability.
    Melko M; Douguet D; Bensaid M; Zongaro S; Verheggen C; Gecz J; Bardoni B
    Hum Mol Genet; 2011 May; 20(10):1873-85. PubMed ID: 21330300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavioural characterisation of the robotic mouse mutant.
    Oliver PL; Keays DA; Davies KE
    Behav Brain Res; 2007 Aug; 181(2):239-47. PubMed ID: 17532061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sun1 deficiency leads to cerebellar ataxia in mice.
    Wang JY; Yu IS; Huang CC; Chen CY; Wang WP; Lin SW; Jeang KT; Chi YH
    Dis Model Mech; 2015 Aug; 8(8):957-67. PubMed ID: 26035387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laf4/Aff3, a gene involved in intellectual disability, is required for cellular migration in the mouse cerebral cortex.
    Moore JM; Oliver PL; Finelli MJ; Lee S; Lickiss T; Molnár Z; Davies KE
    PLoS One; 2014; 9(8):e105933. PubMed ID: 25162227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chromosome 16q-linked autosomal dominant cerebellar ataxia (16q-ADCA): A newly identified degenerative ataxia in Japan showing peculiar morphological changes of the Purkinje cell: The 50th Anniversary of Japanese Society of Neuropathology.
    Ishikawa K; Mizusawa H
    Neuropathology; 2010 Oct; 30(5):490-4. PubMed ID: 20667009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Type 1 inositol trisphosphate receptor regulates cerebellar circuits by maintaining the spine morphology of purkinje cells in adult mice.
    Sugawara T; Hisatsune C; Le TD; Hashikawa T; Hirono M; Hattori M; Nagao S; Mikoshiba K
    J Neurosci; 2013 Jul; 33(30):12186-96. PubMed ID: 23884927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.