BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 27367030)

  • 1. Acquired nintedanib resistance in FGFR1-driven small cell lung cancer: role of endothelin-A receptor-activated ABCB1 expression.
    Englinger B; Lötsch D; Pirker C; Mohr T; van Schoonhoven S; Boidol B; Lardeau CH; Spitzwieser M; Szabó P; Heffeter P; Lang I; Cichna-Markl M; Grasl-Kraupp B; Marian B; Grusch M; Kubicek S; Szakács G; Berger W
    Oncotarget; 2016 Aug; 7(31):50161-50179. PubMed ID: 27367030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic fluorescence of the clinically approved multikinase inhibitor nintedanib reveals lysosomal sequestration as resistance mechanism in FGFR-driven lung cancer.
    Englinger B; Kallus S; Senkiv J; Heilos D; Gabler L; van Schoonhoven S; Terenzi A; Moser P; Pirker C; Timelthaler G; Jäger W; Kowol CR; Heffeter P; Grusch M; Berger W
    J Exp Clin Cancer Res; 2017 Sep; 36(1):122. PubMed ID: 28882160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypermethylation of ATP-binding cassette B1 (ABCB1) multidrug resistance 1 (MDR1) is associated with cisplatin resistance in the A549 lung adenocarcinoma cell line.
    Li A; Song J; Lai Q; Liu B; Wang H; Xu Y; Feng X; Sun X; Du Z
    Int J Exp Pathol; 2016 Dec; 97(6):412-421. PubMed ID: 27995666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FGFR gene alterations in lung squamous cell carcinoma are potential targets for the multikinase inhibitor nintedanib.
    Hibi M; Kaneda H; Tanizaki J; Sakai K; Togashi Y; Terashima M; De Velasco MA; Fujita Y; Banno E; Nakamura Y; Takeda M; Ito A; Mitsudomi T; Nakagawa K; Okamoto I; Nishio K
    Cancer Sci; 2016 Nov; 107(11):1667-1676. PubMed ID: 27581340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-active receptor tyrosine kinases mitigate the effect of FGFR inhibitors in FGFR1-amplified lung cancers with low FGFR1 protein expression.
    Kotani H; Ebi H; Kitai H; Nanjo S; Kita K; Huynh TG; Ooi A; Faber AC; Mino-Kenudson M; Yano S
    Oncogene; 2016 Jul; 35(27):3587-97. PubMed ID: 26549034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of ABCB1 Overcomes Cancer Stem Cell-like Properties and Acquired Resistance to MET Inhibitors in Non-Small Cell Lung Cancer.
    Sugano T; Seike M; Noro R; Soeno C; Chiba M; Zou F; Nakamichi S; Nishijima N; Matsumoto M; Miyanaga A; Kubota K; Gemma A
    Mol Cancer Ther; 2015 Nov; 14(11):2433-40. PubMed ID: 26351321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of Primary Drug Resistance in
    Malchers F; Ercanoglu M; Schütte D; Castiglione R; Tischler V; Michels S; Dahmen I; Brägelmann J; Menon R; Heuckmann JM; George J; Ansén S; Sos ML; Soltermann A; Peifer M; Wolf J; Büttner R; Thomas RK
    Clin Cancer Res; 2017 Sep; 23(18):5527-5536. PubMed ID: 28630215
    [No Abstract]   [Full Text] [Related]  

  • 8. Kinome RNAi Screens Reveal Synergistic Targeting of MTOR and FGFR1 Pathways for Treatment of Lung Cancer and HNSCC.
    Singleton KR; Hinz TK; Kleczko EK; Marek LA; Kwak J; Harp T; Kim J; Tan AC; Heasley LE
    Cancer Res; 2015 Oct; 75(20):4398-406. PubMed ID: 26359452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of fibroblast growth factor receptor 1 in small-cell lung cancer.
    Thomas A; Lee JH; Abdullaev Z; Park KS; Pineda M; Saidkhodjaeva L; Miettinen M; Wang Y; Pack SD; Giaccone G
    J Thorac Oncol; 2014 Apr; 9(4):567-71. PubMed ID: 24736083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FGFR1 overexpression in non-small cell lung cancer is mediated by genetic and epigenetic mechanisms and is a determinant of FGFR1 inhibitor response.
    Bogatyrova O; Mattsson JSM; Ross EM; Sanderson MP; Backman M; Botling J; Brunnström H; Kurppa P; La Fleur L; Strell C; Wilm C; Zimmermann A; Esdar C; Micke P
    Eur J Cancer; 2021 Jul; 151():136-149. PubMed ID: 33984662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer.
    Weiss J; Sos ML; Seidel D; Peifer M; Zander T; Heuckmann JM; Ullrich RT; Menon R; Maier S; Soltermann A; Moch H; Wagener P; Fischer F; Heynck S; Koker M; Schöttle J; Leenders F; Gabler F; Dabow I; Querings S; Heukamp LC; Balke-Want H; Ansén S; Rauh D; Baessmann I; Altmüller J; Wainer Z; Conron M; Wright G; Russell P; Solomon B; Brambilla E; Brambilla C; Lorimier P; Sollberg S; Brustugun OT; Engel-Riedel W; Ludwig C; Petersen I; Sänger J; Clement J; Groen H; Timens W; Sietsma H; Thunnissen E; Smit E; Heideman D; Cappuzzo F; Ligorio C; Damiani S; Hallek M; Beroukhim R; Pao W; Klebl B; Baumann M; Buettner R; Ernestus K; Stoelben E; Wolf J; Nürnberg P; Perner S; Thomas RK
    Sci Transl Med; 2010 Dec; 2(62):62ra93. PubMed ID: 21160078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triple Angiokinase Inhibitor Nintedanib Directly Inhibits Tumor Cell Growth and Induces Tumor Shrinkage via Blocking Oncogenic Receptor Tyrosine Kinases.
    Hilberg F; Tontsch-Grunt U; Baum A; Le AT; Doebele RC; Lieb S; Gianni D; Voss T; Garin-Chesa P; Haslinger C; Kraut N
    J Pharmacol Exp Ther; 2018 Mar; 364(3):494-503. PubMed ID: 29263244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translating the therapeutic potential of AZD4547 in FGFR1-amplified non-small cell lung cancer through the use of patient-derived tumor xenograft models.
    Zhang J; Zhang L; Su X; Li M; Xie L; Malchers F; Fan S; Yin X; Xu Y; Liu K; Dong Z; Zhu G; Qian Z; Tang L; Schöttle J; Zhan P; Ji Q; Kilgour E; Smith PD; Brooks AN; Thomas RK; Gavine PR
    Clin Cancer Res; 2012 Dec; 18(24):6658-67. PubMed ID: 23082000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistance mediated by alternative receptor tyrosine kinases in FGFR1-amplified lung cancer.
    Adachi Y; Watanabe K; Kita K; Kitai H; Kotani H; Sato Y; Inase N; Yano S; Ebi H
    Carcinogenesis; 2017 Oct; 38(11):1063-1072. PubMed ID: 28968756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. miR-200/ZEB axis regulates sensitivity to nintedanib in non-small cell lung cancer cells.
    Nishijima N; Seike M; Soeno C; Chiba M; Miyanaga A; Noro R; Sugano T; Matsumoto M; Kubota K; Gemma A
    Int J Oncol; 2016 Mar; 48(3):937-44. PubMed ID: 26783187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nintedanib selectively inhibits the activation and tumour-promoting effects of fibroblasts from lung adenocarcinoma patients.
    Gabasa M; Ikemori R; Hilberg F; Reguart N; Alcaraz J
    Br J Cancer; 2017 Oct; 117(8):1128-1138. PubMed ID: 28898237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CHD1L contributes to cisplatin resistance by upregulating the ABCB1-NF-κB axis in human non-small-cell lung cancer.
    Li Y; He LR; Gao Y; Zhou NN; Liu Y; Zhou XK; Liu JF; Guan XY; Ma NF; Xie D
    Cell Death Dis; 2019 Feb; 10(2):99. PubMed ID: 30718500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cause-and-Effect relationship between FGFR1 expression and epithelial-mesenchymal transition in EGFR-mutated non-small cell lung cancer cells.
    Vad-Nielsen J; Gammelgaard KR; Daugaard TF; Nielsen AL
    Lung Cancer; 2019 Jun; 132():132-140. PubMed ID: 31097086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FGFR1 and FGFR4 oncogenicity depends on n-cadherin and their co-expression may predict FGFR-targeted therapy efficacy.
    Quintanal-Villalonga Á; Ferrer I; Guruceaga E; Cirauqui C; Marrugal Á; Ojeda L; García S; Zugazagoitia J; Muñoz-Galván S; Lopez-Rios F; Montuenga L; Vicent S; Molina-Pinelo S; Carnero A; Paz-Ares L
    EBioMedicine; 2020 Mar; 53():102683. PubMed ID: 32114392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel FGFR inhibitor ponatinib suppresses the growth of non-small cell lung cancer cells overexpressing FGFR1.
    Ren M; Hong M; Liu G; Wang H; Patel V; Biddinger P; Silva J; Cowell J; Hao Z
    Oncol Rep; 2013 Jun; 29(6):2181-90. PubMed ID: 23563700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.