BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29508535)

  • 1. Design and development of a phantom for tomosynthesis with potential for automated analysis via the cloud.
    Goodenough D; Levy J; Olafsdottir H; Olafsson I
    J Appl Clin Med Phys; 2018 May; 19(3):291-300. PubMed ID: 29508535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PHYSICAL CHARACTERISATION OF FOUR DIFFERENT COMMERCIAL DIGITAL BREAST TOMOSYNTHESIS SYSTEMS.
    Ortenzia O; Rossi R; Bertolini M; Nitrosi A; Ghetti C
    Radiat Prot Dosimetry; 2018 Oct; 181(3):277-289. PubMed ID: 29462366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantitative metrology for performance characterization of five breast tomosynthesis systems based on an anthropomorphic phantom.
    Ikejimba L; Lo JY; Chen Y; Oberhofer N; Kiarashi N; Samei E
    Med Phys; 2016 Apr; 43(4):1627. PubMed ID: 27036562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner.
    Patel T; Peppard H; Williams MB
    Med Phys; 2016 Apr; 43(4):1720. PubMed ID: 27036570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quality control for digital tomosynthesis in the ECOG-ACRIN EA1151 TMIST trial.
    Maki AK; Mawdsley GE; Mainprize JG; Pisano ED; Shen SZ; Alonzo-Proulx O; Yaffe MJ
    Med Phys; 2023 Dec; 50(12):7441-7461. PubMed ID: 37830895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction.
    Choi S; Lee H; Lee D; Choi S; Lee CL; Kwon W; Shin J; Seo CW; Kim HJ
    Med Phys; 2018 May; 45(5):1871-1888. PubMed ID: 29500855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Audit of data from examination image headers collected for quality assurance in the ECOG-ACRIN EA1151 tomosynthesis mammographic imaging screening trial (TMIST).
    Maki AK; Mawdsley GE; Mainprize JG; Pisano E; Shen SZ; Alonzo-Proulx O; Yaffe MJ
    Med Phys; 2023 Dec; 50(12):7427-7440. PubMed ID: 37824821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A phantom study comparing technical image quality of five breast tomosynthesis systems.
    Sundell VM; Jousi M; Hukkinen K; Blanco R; Mäkelä T; Kaasalainen T
    Phys Med; 2019 Jul; 63():122-130. PubMed ID: 31221403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term Inter-protocol kV CBCT image quality assessment for a ring-gantry linac via automated QA approach.
    Peng J; Li H; Laugeman E; Mazur T; Lam D; Li T; Sun B; Hu W; Dong L; Hugo GD; Mutic S; Cai B
    Biomed Phys Eng Express; 2020 Jan; 6(1):015025. PubMed ID: 33438613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative power law analysis of structured breast phantom and patient images in digital mammography and breast tomosynthesis.
    Cockmartin L; Bosmans H; Marshall NW
    Med Phys; 2013 Aug; 40(8):081920. PubMed ID: 23927334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How does c-view image quality compare with conventional 2D FFDM?
    Nelson JS; Wells JR; Baker JA; Samei E
    Med Phys; 2016 May; 43(5):2538. PubMed ID: 27147364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital breast tomosynthesis: Dose and image quality assessment.
    Maldera A; De Marco P; Colombo PE; Origgi D; Torresin A
    Phys Med; 2017 Jan; 33():56-67. PubMed ID: 28010921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction.
    Zheng J; Fessler JA; Chan HP
    Med Phys; 2017 Mar; 44(3):986-1001. PubMed ID: 28058719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility study of shutter scan acquisition for region of interest (ROI) digital tomosynthesis.
    Kim D; Jo B; Lee D; Lee H; Choi S; Kim H; Chao Z; Choi S; Kim HJ
    J Appl Clin Med Phys; 2018 May; 19(3):301-309. PubMed ID: 29493082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task-based performance analysis of FBP, SART and ML for digital breast tomosynthesis using signal CNR and Channelised Hotelling Observers.
    Van de Sompel D; Brady SM; Boone J
    Med Image Anal; 2011 Feb; 15(1):53-70. PubMed ID: 20713313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breast tomosynthesis: Dosimetry and image quality assessment on phantom.
    Meyblum E; Gardavaud F; Dao TH; Fournier V; Beaussart P; Pigneur F; Baranes L; Rahmouni A; Luciani A
    Diagn Interv Imaging; 2015 Sep; 96(9):931-9. PubMed ID: 25908324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quality assurance framework for the fully automated and objective evaluation of image quality in cone-beam computed tomography.
    Steiding C; Kolditz D; Kalender WA
    Med Phys; 2014 Mar; 41(3):031901. PubMed ID: 24593719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variations in slice sensitivity profile for various height settings in tomosynthesis imaging: Phantom study.
    Kuramoto T; Morishita J; Kato T; Nakamura Y
    Phys Med; 2018 Sep; 53():108-117. PubMed ID: 30241745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale bilateral filtering for improving image quality in digital breast tomosynthesis.
    Lu Y; Chan HP; Wei J; Hadjiiski LM; Samala RK
    Med Phys; 2015 Jan; 42(1):182-95. PubMed ID: 25563259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detectability comparison of simulated tumors in digital breast tomosynthesis using high-energy X-ray inline phase sensitive and commercial imaging systems.
    Ghani MU; Wong MD; Omoumi FH; Zheng B; Fajardo LL; Yan A; Wu X; Liu H
    Phys Med; 2018 Mar; 47():34-41. PubMed ID: 29609816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.