BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

754 related articles for article (PubMed ID: 31154896)

  • 1. Proliferating tumor cells mimick glucose metabolism of mature human erythrocytes.
    Ghashghaeinia M; Köberle M; Mrowietz U; Bernhardt I
    Cell Cycle; 2019 Jun; 18(12):1316-1334. PubMed ID: 31154896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma.
    Du D; Liu C; Qin M; Zhang X; Xi T; Yuan S; Hao H; Xiong J
    Acta Pharm Sin B; 2022 Feb; 12(2):558-580. PubMed ID: 35256934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solute carrier transporters: the metabolic gatekeepers of immune cells.
    Song W; Li D; Tao L; Luo Q; Chen L
    Acta Pharm Sin B; 2020 Jan; 10(1):61-78. PubMed ID: 31993307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of storage carbohydrates and other cyclic fluxes with central metabolism: A quantitative approach by non-stationary
    Suarez-Mendez CA; Hanemaaijer M; Ten Pierick A; Wolters JC; Heijnen JJ; Wahl SA
    Metab Eng Commun; 2016 Dec; 3():52-63. PubMed ID: 29468113
    [No Abstract]   [Full Text] [Related]  

  • 6. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends.
    Ścibior A; Pietrzyk Ł; Plewa Z; Skiba A
    J Trace Elem Med Biol; 2020 Sep; 61():126508. PubMed ID: 32305626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Naringin prevents cyclophosphamide-induced erythrocytotoxicity in rats by abrogating oxidative stress.
    Akamo AJ; Akinloye DI; Ugbaja RN; Adeleye OO; Dosumu OA; Eteng OE; Antiya MC; Amah G; Ajayi OA; Faseun SO
    Toxicol Rep; 2021; 8():1803-1813. PubMed ID: 34760624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisited Metabolic Control and Reprogramming Cancers by Means of the Warburg Effect in Tumor Cells.
    Fukushi A; Kim HD; Chang YC; Kim CH
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycolytic pathway, redox state of NAD(P)-couples and energy metabolism in lens in galactose-fed rats: effect of an aldose reductase inhibitor.
    Obrosova I; Faller A; Burgan J; Ostrow E; Williamson JR
    Curr Eye Res; 1997 Jan; 16(1):34-43. PubMed ID: 9043821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular metabolic and autophagic pathways: traffic control by redox signaling.
    Dodson M; Darley-Usmar V; Zhang J
    Free Radic Biol Med; 2013 Oct; 63():207-21. PubMed ID: 23702245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pentose phosphate pathway of glucose metabolism. Hormonal and dietary control of the oxidative and non-oxidative reactions of the cycle in liver.
    Novello F; Gumaa JA; McLean P
    Biochem J; 1969 Mar; 111(5):713-25. PubMed ID: 5791534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutathione Depletion, Pentose Phosphate Pathway Activation, and Hemolysis in Erythrocytes Protecting Cancer Cells from Vitamin C-induced Oxidative Stress.
    Zhang ZZ; Lee EE; Sudderth J; Yue Y; Zia A; Glass D; Deberardinis RJ; Wang RC
    J Biol Chem; 2016 Oct; 291(44):22861-22867. PubMed ID: 27660392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Should the standard model of cellular energy metabolism be reconsidered? Possible coupling between the pentose phosphate pathway, glycolysis and extra-mitochondrial oxidative phosphorylation.
    Morelli AM; Scholkmann F
    Biochimie; 2024 Jun; 221():99-109. PubMed ID: 38307246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells.
    Reisz JA; Wither MJ; Dzieciatkowska M; Nemkov T; Issaian A; Yoshida T; Dunham AJ; Hill RC; Hansen KC; D'Alessandro A
    Blood; 2016 Sep; 128(12):e32-42. PubMed ID: 27405778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the pentose phosphate pathway in cancer.
    Jiang P; Du W; Wu M
    Protein Cell; 2014; 5(8):592-602. PubMed ID: 25015087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of oxidized nicotinamide adenine dinucleotide in fluoride inhibition of active sodium transport in human erythrocytes.
    Millman MS; Omachi A
    J Gen Physiol; 1972 Sep; 60(3):337-50. PubMed ID: 4341351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype.
    Ganapathy-Kanniappan S
    Crit Rev Biochem Mol Biol; 2018 Dec; 53(6):667-682. PubMed ID: 30668176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The enzymes of the classical pentose phosphate pathway display differential activities in procyclic and bloodstream forms of Trypanosoma brucei.
    Cronín CN; Nolan DP; Voorheis HP
    FEBS Lett; 1989 Feb; 244(1):26-30. PubMed ID: 2924907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNAs and oncogenic transcriptional regulatory networks controlling metabolic reprogramming in cancers.
    Pinweha P; Rattanapornsompong K; Charoensawan V; Jitrapakdee S
    Comput Struct Biotechnol J; 2016; 14():223-33. PubMed ID: 27358718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes.
    Ogasawara Y; Funakoshi M; Ishii K
    Blood Cells Mol Dis; 2008; 41(3):237-43. PubMed ID: 18706836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.