BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 33755120)

  • 1. Perspectives of cellular communication through tunneling nanotubes in cancer cells and the connection to radiation effects.
    Matejka N; Reindl J
    Radiat Oncol; 2019 Dec; 14(1):218. PubMed ID: 31796110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular bridges: Routes for intercellular communication and cell migration.
    Zani BG; Edelman ER
    Commun Integr Biol; 2010 May; 3(3):215-20. PubMed ID: 20714396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different types of cell-to-cell connections mediated by nanotubular structures.
    Veranic P; Lokar M; Schütz GJ; Weghuber J; Wieser S; Hägerstrand H; Kralj-Iglic V; Iglic A
    Biophys J; 2008 Nov; 95(9):4416-25. PubMed ID: 18658210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Glioblastomas exploit neuronal properties: a key to new forms of treatment?].
    Venkataramani V; Winkler F
    Nervenarzt; 2024 Feb; 95(2):96-103. PubMed ID: 38157044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On fields, light and excitability in glioblastoma: Comment on: "The distinguishing electrical properties of cancer cells" by Di Gregorio et al.
    Halatsch ME
    Phys Life Rev; 2023 Dec; 47():15-16. PubMed ID: 37660430
    [No Abstract]   [Full Text] [Related]  

  • 6. Transcription factor-based gene therapy to treat glioblastoma through direct neuronal conversion.
    Wang X; Pei Z; Hossain A; Bai Y; Chen G
    Cancer Biol Med; 2021 Mar; 18(3):860-74. PubMed ID: 33755378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glioblastomas with primitive neuronal component harbor a distinct methylation and copy-number profile with inactivation of TP53, PTEN, and RB1.
    Suwala AK; Stichel D; Schrimpf D; Maas SLN; Sill M; Dohmen H; Banan R; Reinhardt A; Sievers P; Hinz F; Blattner-Johnson M; Hartmann C; Schweizer L; Boldt HB; Kristensen BW; Schittenhelm J; Wood MD; Chotard G; Bjergvig R; Das A; Tabori U; Hasselblatt M; Korshunov A; Abdullaev Z; Quezado M; Aldape K; Harter PN; Snuderl M; Hench J; Frank S; Acker T; Brandner S; Winkler F; Wesseling P; Pfister SM; Reuss DE; Wick W; von Deimling A; Jones DTW; Sahm F
    Acta Neuropathol; 2021 Jul; 142(1):179-189. PubMed ID: 33876327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TGF-β activates pericytes via induction of the epithelial-to-mesenchymal transition protein SLUG in glioblastoma.
    Wirsik NM; Ehlers J; Mäder L; Ilina EI; Blank AE; Grote A; Feuerhake F; Baumgarten P; Devraj K; Harter PN; Mittelbronn M; Naumann U
    Neuropathol Appl Neurobiol; 2021 Oct; 47(6):768-780. PubMed ID: 33780024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perspective: targeting VEGF-A and YKL-40 in glioblastoma - matter matters.
    Holst CB; Pedersen H; Obara EAA; Vitting-Seerup K; Jensen KE; Skjøth-Rasmussen J; Lund EL; Poulsen HS; Johansen JS; Hamerlik P
    Cell Cycle; 2021 Apr; 20(7):702-715. PubMed ID: 33779510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. γH2AX foci assay in glioblastoma: Surgical specimen versus corresponding stem cell culture.
    Riedel A; Klumpp L; Menegakis A; De-Colle C; Huber SM; Schittenhelm J; Neumann M; Noell S; Tatagiba M; Zips D
    Radiother Oncol; 2021 Jun; 159():119-125. PubMed ID: 33775712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocell-mediated delivery of miR-34a counteracts temozolomide resistance in glioblastoma.
    Khan MB; Ruggieri R; Jamil E; Tran NL; Gonzalez C; Mugridge N; Gao S; MacDiarmid J; Brahmbhatt H; Sarkaria JN; Boockvar J; Symons M
    Mol Med; 2021 Mar; 27(1):28. PubMed ID: 33765907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The immune suppressive microenvironment affects efficacy of radio-immunotherapy in brain metastasis.
    Niesel K; Schulz M; Anthes J; Alekseeva T; Macas J; Salamero-Boix A; Möckl A; Oberwahrenbrock T; Lolies M; Stein S; Plate KH; Reiss Y; Rödel F; Sevenich L
    EMBO Mol Med; 2021 May; 13(5):e13412. PubMed ID: 33755340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silencing glioblastoma networks to make temozolomide more effective.
    Winkler F
    Neuro Oncol; 2021 Nov; 23(11):1807-1809. PubMed ID: 34347098
    [No Abstract]   [Full Text] [Related]  

  • 14. The role of tunneling nanotubes during early stages of HIV infection and reactivation: implications in HIV cure.
    Valdebenito S; Ono A; Rong L; Eugenin EA
    NeuroImmune Pharm Ther; 2023 Jun; 2(2):169-186. PubMed ID: 37476291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain Tumor Networks in Diffuse Glioma.
    Yang Y; Schubert MC; Kuner T; Wick W; Winkler F; Venkataramani V
    Neurotherapeutics; 2022 Oct; 19(6):1832-1843. PubMed ID: 36357661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TNTdetect.AI: A Deep Learning Model for Automated Detection and Counting of Tunneling Nanotubes in Microscopy Images.
    Ceran Y; Ergüder H; Ladner K; Korenfeld S; Deniz K; Padmanabhan S; Wong P; Baday M; Pengo T; Lou E; Patel CB
    Cancers (Basel); 2022 Oct; 14(19):. PubMed ID: 36230881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intercellular Communication in the Brain through Tunneling Nanotubes.
    Khattar KE; Safi J; Rodriguez AM; Vignais ML
    Cancers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunneling nanotubes, TNT, communicate glioblastoma with surrounding non-tumor astrocytes to adapt them to hypoxic and metabolic tumor conditions.
    Valdebenito S; Malik S; Luu R; Loudig O; Mitchell M; Okafo G; Bhat K; Prideaux B; Eugenin EA
    Sci Rep; 2021 Jul; 11(1):14556. PubMed ID: 34267246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two routes of direct intercellular communication in brain cancer.
    Azorín DD; Winkler F
    Biochem J; 2021 Mar; 478(6):1283-1286. PubMed ID: 33755120
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.