BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 34531254)

  • 1. An
    Lin S; Larrue C; Scheidegger NK; Seong BKA; Dharia NV; Kuljanin M; Wechsler CS; Kugener G; Robichaud AL; Conway AS; Mashaka T; Mouche S; Adane B; Ryan JA; Mancias JD; Younger ST; Piccioni F; Lee LH; Wunderlich M; Letai A; Tamburini J; Stegmaier K
    Cancer Discov; 2022 Feb; 12(2):432-449. PubMed ID: 34531254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting Mitochondrial Structure Sensitizes Acute Myeloid Leukemia to Venetoclax Treatment.
    Chen X; Glytsou C; Zhou H; Narang S; Reyna DE; Lopez A; Sakellaropoulos T; Gong Y; Kloetgen A; Yap YS; Wang E; Gavathiotis E; Tsirigos A; Tibes R; Aifantis I
    Cancer Discov; 2019 Jul; 9(7):890-909. PubMed ID: 31048321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Exploration of novel therapeutic targets in acute myeloid leukemia via genome-wide CRISPR screening].
    Yamauchi T
    Rinsho Ketsueki; 2019; 60(7):810-817. PubMed ID: 31391371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting leukemia-specific dependence on the de novo purine synthesis pathway.
    Yamauchi T; Miyawaki K; Semba Y; Takahashi M; Izumi Y; Nogami J; Nakao F; Sugio T; Sasaki K; Pinello L; Bauer DE; Bamba T; Akashi K; Maeda T
    Leukemia; 2022 Feb; 36(2):383-393. PubMed ID: 34344987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SLC5A3-Dependent Myo-inositol Auxotrophy in Acute Myeloid Leukemia.
    Wei Y; Huang YH; Skopelitis DS; Iyer SV; Costa ASH; Yang Z; Kramer M; Adelman ER; Klingbeil O; Demerdash OE; Polyanskaya SA; Chang K; Goodwin S; Hodges E; McCombie WR; Figueroa ME; Vakoc CR
    Cancer Discov; 2022 Feb; 12(2):450-467. PubMed ID: 34531253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-scale drop-out screens to identify cancer cell vulnerabilities in AML.
    Basheer FT; Vassiliou GS
    Curr Opin Genet Dev; 2019 Feb; 54():83-87. PubMed ID: 31063922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The TP53 Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in AML Cells.
    Nechiporuk T; Kurtz SE; Nikolova O; Liu T; Jones CL; D'Alessandro A; Culp-Hill R; d'Almeida A; Joshi SK; Rosenberg M; Tognon CE; Danilov AV; Druker BJ; Chang BH; McWeeney SK; Tyner JW
    Cancer Discov; 2019 Jul; 9(7):910-925. PubMed ID: 31048320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Screening Unveils Pervasive RNA-Binding Protein Dependencies in Leukemic Stem Cells and Identifies ELAVL1 as a Therapeutic Target.
    Vujovic A; de Rooij L; Chahi AK; Chen HT; Yee BA; Loganathan SK; Liu L; Chan DCH; Tajik A; Tsao E; Moreira S; Joshi P; Xu J; Wong N; Balde Z; Jahangiri S; Zandi S; Aigner S; Dick JE; Minden MD; Schramek D; Yeo GW; Hope KJ
    Blood Cancer Discov; 2023 May; 4(3):180-207. PubMed ID: 36763002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel MCL1 Inhibitor Combined with Venetoclax Rescues Venetoclax-Resistant Acute Myelogenous Leukemia.
    Ramsey HE; Fischer MA; Lee T; Gorska AE; Arrate MP; Fuller L; Boyd KL; Strickland SA; Sensintaffar J; Hogdal LJ; Ayers GD; Olejniczak ET; Fesik SW; Savona MR
    Cancer Discov; 2018 Dec; 8(12):1566-1581. PubMed ID: 30185627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide CRISPR/Cas9 screen identifies etoposide response modulators associated with clinical outcomes in pediatric AML.
    Nguyen NHK; Rafiee R; Tagmount A; Sobh A; Loguinov A; de Jesus Sosa AK; Elsayed AH; Gbadamosi M; Seligson N; Cogle CR; Rubnitz J; Ribeiro R; Downing J; Cao X; Pounds SB; Vulpe CD; Lamba JK
    Blood Adv; 2023 May; 7(9):1769-1783. PubMed ID: 36111891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia.
    Tzelepis K; Koike-Yusa H; De Braekeleer E; Li Y; Metzakopian E; Dovey OM; Mupo A; Grinkevich V; Li M; Mazan M; Gozdecka M; Ohnishi S; Cooper J; Patel M; McKerrell T; Chen B; Domingues AF; Gallipoli P; Teichmann S; Ponstingl H; McDermott U; Saez-Rodriguez J; Huntly BJP; Iorio F; Pina C; Vassiliou GS; Yusa K
    Cell Rep; 2016 Oct; 17(4):1193-1205. PubMed ID: 27760321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic effect of BCL2 and FLT3 co-inhibition in acute myeloid leukemia.
    Brinton LT; Zhang P; Williams K; Canfield D; Orwick S; Sher S; Wasmuth R; Beaver L; Cempre C; Skinner J; Cannon M; Govande M; Harrington B; Lehman A; Byrd JC; Lapalombella R; Blachly JS
    J Hematol Oncol; 2020 Oct; 13(1):139. PubMed ID: 33076970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 225Ac-labeled CD33-targeting antibody reverses resistance to Bcl-2 inhibitor venetoclax in acute myeloid leukemia models.
    Garg R; Allen KJH; Dawicki W; Geoghegan EM; Ludwig DL; Dadachova E
    Cancer Med; 2021 Feb; 10(3):1128-1140. PubMed ID: 33347715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous kinase inhibition with ibrutinib and BCL2 inhibition with venetoclax offers a therapeutic strategy for acute myeloid leukemia.
    Eide CA; Kurtz SE; Kaempf A; Long N; Agarwal A; Tognon CE; Mori M; Druker BJ; Chang BH; Danilov AV; Tyner JW
    Leukemia; 2020 Sep; 34(9):2342-2353. PubMed ID: 32094466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo inducible reverse genetics in patients' tumors to identify individual therapeutic targets.
    Carlet M; Völse K; Vergalli J; Becker M; Herold T; Arner A; Senft D; Jurinovic V; Liu WH; Gao Y; Dill V; Fehse B; Baldus CD; Bastian L; Lenk L; Schewe DM; Bagnoli JW; Vick B; Schmid JP; Wilhelm A; Marschalek R; Jost PJ; Miething C; Riecken K; Schmidt-Supprian M; Binder V; Jeremias I
    Nat Commun; 2021 Sep; 12(1):5655. PubMed ID: 34580292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-Scale In Vitro and In Vivo CRISPR-Cas9 Knockout Screens Identify a 16-Gene Fitness Score for Improved Risk Assessment in Acute Myeloid Leukemia.
    Jin P; Jin Q; Wang X; Zhao M; Dong F; Jiang G; Li Z; Shen J; Zhang W; Wu S; Li R; Zhang Y; Li X; Li J
    Clin Cancer Res; 2022 Sep; 28(18):4033-4044. PubMed ID: 35877119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apoptosis targeted therapies in acute myeloid leukemia: an update.
    Ball S; Borthakur G
    Expert Rev Hematol; 2020 Dec; 13(12):1373-1386. PubMed ID: 33205684
    [No Abstract]   [Full Text] [Related]  

  • 18. Napabucasin (BBI608) eliminate AML cells in vitro and in vivo via inhibition of Stat3 pathway and induction of DNA damage.
    Bi S; Chen K; Feng L; Fu G; Yang Q; Deng M; Zhao H; Li Z; Yu L; Fang Z; Xu B
    Eur J Pharmacol; 2019 Jul; 855():252-261. PubMed ID: 31085238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preclinical efficacy for a novel tyrosine kinase inhibitor, ArQule 531 against acute myeloid leukemia.
    Elgamal OA; Mehmood A; Jeon JY; Carmichael B; Lehman A; Orwick SJ; Truxall J; Goettl VM; Wasmuth R; Tran M; Mitchell S; Lapalombella R; Eathiraj S; Schwartz B; Stegmaier K; Baker SD; Hertlein E; Byrd JC
    J Hematol Oncol; 2020 Jan; 13(1):8. PubMed ID: 31992353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of acute myeloid leukemia in the next decade - Towards real-time functional testing and personalized medicine.
    Lam SS; He AB; Leung AY
    Blood Rev; 2017 Nov; 31(6):418-425. PubMed ID: 28797519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.