BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34627261)

  • 1. A first case of ductal adenocarcinoma of the prostate having characteristics of neuroendocrine phenotype with PTEN, RB1 and TP53 alterations.
    Kobayashi H; Kosaka T; Nakamura K; Shojo K; Hongo H; Mikami S; Nishihara H; Oya M
    BMC Med Genomics; 2021 Oct; 14(1):245. PubMed ID: 34627261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroendocrine differentiation in usual-type prostatic adenocarcinoma: Molecular characterization and clinical significance.
    Kaur H; Samarska I; Lu J; Faisal F; Maughan BL; Murali S; Asrani K; Alshalalfa M; Antonarakis ES; Epstein JI; Joshu CE; Schaeffer EM; Mosquera JM; Lotan TL
    Prostate; 2020 Sep; 80(12):1012-1023. PubMed ID: 32649013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compound Genomic Alterations of TP53, PTEN, and RB1 Tumor Suppressors in Localized and Metastatic Prostate Cancer.
    Hamid AA; Gray KP; Shaw G; MacConaill LE; Evan C; Bernard B; Loda M; Corcoran NM; Van Allen EM; Choudhury AD; Sweeney CJ
    Eur Urol; 2019 Jul; 76(1):89-97. PubMed ID: 30553611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunohistochemistry-based assessment of androgen receptor status and the AR-null phenotype in metastatic castrate resistant prostate cancer.
    Gupta S; Vanderbilt C; Abida W; Fine SW; Tickoo SK; Al-Ahmadie HA; Chen YB; Sirintrapun SJ; Chadalavada K; Nanjangud GJ; Bialik A; Morris MJ; Scher HI; Ladanyi M; Reuter VE; Gopalan A
    Prostate Cancer Prostatic Dis; 2020 Sep; 23(3):507-516. PubMed ID: 32094488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistance to androgen receptor signaling inhibition does not necessitate development of neuroendocrine prostate cancer.
    Brennen WN; Zhu Y; Coleman IM; Dalrymple SL; Antony L; Patel RA; Hanratty B; Chikarmane R; Meeker AK; Zheng SL; Hooper JE; Luo J; De Marzo AM; Corey E; Xu J; Yegnasubramanian S; Haffner MC; Nelson PS; Nelson WG; Isaacs WB; Isaacs JT
    JCI Insight; 2021 Apr; 6(8):. PubMed ID: 33724955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of high-risk human papillomavirus and Rb/E2F pathway genomic alterations in mutually exclusive subsets of colorectal neuroendocrine carcinoma.
    Shamir ER; Devine WP; Pekmezci M; Umetsu SE; Krings G; Federman S; Cho SJ; Saunders TA; Jen KY; Bergsland E; Jones K; Kim GE; Kakar S; Chiu CY; Joseph NM
    Mod Pathol; 2019 Feb; 32(2):290-305. PubMed ID: 30237525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma.
    Tan HL; Sood A; Rahimi HA; Wang W; Gupta N; Hicks J; Mosier S; Gocke CD; Epstein JI; Netto GJ; Liu W; Isaacs WB; De Marzo AM; Lotan TL
    Clin Cancer Res; 2014 Feb; 20(4):890-903. PubMed ID: 24323898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-free DNA profiling of metastatic prostate cancer reveals microsatellite instability, structural rearrangements and clonal hematopoiesis.
    Mayrhofer M; De Laere B; Whitington T; Van Oyen P; Ghysel C; Ampe J; Ost P; Demey W; Hoekx L; Schrijvers D; Brouwers B; Lybaert W; Everaert E; De Maeseneer D; Strijbos M; Bols A; Fransis K; Oeyen S; van Dam PJ; Van den Eynden G; Rutten A; Aly M; Nordström T; Van Laere S; Rantalainen M; Rajan P; Egevad L; Ullén A; Yachnin J; Dirix L; Grönberg H; Lindberg J
    Genome Med; 2018 Nov; 10(1):85. PubMed ID: 30458854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined TP53 and RB1 Loss Promotes Prostate Cancer Resistance to a Spectrum of Therapeutics and Confers Vulnerability to Replication Stress.
    Nyquist MD; Corella A; Coleman I; De Sarkar N; Kaipainen A; Ha G; Gulati R; Ang L; Chatterjee P; Lucas J; Pritchard C; Risbridger G; Isaacs J; Montgomery B; Morrissey C; Corey E; Nelson PS
    Cell Rep; 2020 May; 31(8):107669. PubMed ID: 32460015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential impact of tumor suppressor gene (TP53, PTEN, RB1) alterations and treatment outcomes in metastatic, hormone-sensitive prostate cancer.
    Velez MG; Kosiorek HE; Egan JB; McNatty AL; Riaz IB; Hwang SR; Stewart GA; Ho TH; Moore CN; Singh P; Sharpsten RK; Costello BA; Bryce AH
    Prostate Cancer Prostatic Dis; 2022 Sep; 25(3):479-483. PubMed ID: 34294873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lineage plasticity in cancer: a shared pathway of therapeutic resistance.
    Quintanal-Villalonga Á; Chan JM; Yu HA; Pe'er D; Sawyers CL; Sen T; Rudin CM
    Nat Rev Clin Oncol; 2020 Jun; 17(6):360-371. PubMed ID: 32152485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishment and characterization of a novel treatment-related neuroendocrine prostate cancer cell line KUCaP13.
    Okasho K; Mizuno K; Fukui T; Lin YY; Kamiyama Y; Sunada T; Li X; Kimura H; Sumiyoshi T; Goto T; Kobayashi T; Lin D; Wang Y; Collins CC; Inoue T; Ogawa O; Akamatsu S
    Cancer Sci; 2021 Jul; 112(7):2781-2791. PubMed ID: 33960594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. REST Inactivation and Coexpression of ASCL1 and POU3F4 Are Necessary for the Complete Transformation of RB1/TP53-Inactivated Lung Adenocarcinoma into Neuroendocrine Carcinoma.
    Masawa M; Sato-Yazawa H; Kashiwagi K; Ishii J; Miyata-Hiramatsu C; Iwamoto M; Kohno K; Miyazawa T; Onozaki M; Noda S; Shimizu Y; Niho S; Yazawa T
    Am J Pathol; 2022 Jun; 192(6):847-861. PubMed ID: 35367201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shared TP53 gene mutation in morphologically and phenotypically distinct concurrent primary small cell neuroendocrine carcinoma and adenocarcinoma of the prostate.
    Hansel DE; Nakayama M; Luo J; Abukhdeir AM; Park BH; Bieberich CJ; Hicks JL; Eisenberger M; Nelson WG; Mostwin JL; De Marzo AM
    Prostate; 2009 May; 69(6):603-9. PubMed ID: 19125417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of PSMA-Targeted
    Tosoian JJ; Gorin MA; Rowe SP; Andreas D; Szabo Z; Pienta KJ; Pomper MG; Lotan TL; Ross AE
    Clin Genitourin Cancer; 2017 Feb; 15(1):e65-e68. PubMed ID: 27751686
    [No Abstract]   [Full Text] [Related]  

  • 16. Targeted Next-Generation Sequencing Reveals Heterogenous Genomic Features in Viscerally Metastatic Prostate Cancer.
    Gong Y; Fan L; Fei X; Zhu Y; Du X; He Y; Pan J; Dong B; Xue W
    J Urol; 2021 Aug; 206(2):279-288. PubMed ID: 33780283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative Genomic Analysis of Coincident Cancer Foci Implicates CTNNB1 and PTEN Alterations in Ductal Prostate Cancer.
    Gillard M; Lack J; Pontier A; Gandla D; Hatcher D; Sowalsky AG; Rodriguez-Nieves J; Vander Griend D; Paner G; VanderWeele D
    Eur Urol Focus; 2019 May; 5(3):433-442. PubMed ID: 29229583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation from EGFR/PTEN co-mutated lung adenocarcinoma to small cell carcinoma in lymph node metastasis.
    Hayashi T; Takamochi K; Kohsaka S; Kishikawa S; Suehara Y; Takahashi F; Suzuki K; Saito T; Yao T
    Pathol Int; 2020 May; 70(5):295-299. PubMed ID: 32162763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive analysis of mutational and clinicopathologic characteristics of poorly differentiated colorectal neuroendocrine carcinomas.
    Lee SM; Sung CO
    Sci Rep; 2021 Mar; 11(1):6203. PubMed ID: 33737597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Japanese case of castration-resistant prostate cancer with BRCA2 and RB1 co-loss and TP53 mutation: a case report.
    Iwasawa T; Kosaka T; Morita S; Mikami S; Nakamura K; Hongo H; Nishihara H; Oya M
    BMC Med Genomics; 2022 Jun; 15(1):138. PubMed ID: 35725469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.