BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35034954)

  • 1. CRISPR screening in human hematopoietic stem and progenitor cells reveals an enrichment for tumor suppressor genes within chromosome 7 commonly deleted regions.
    Baeten JT; Liu W; Preddy IC; Zhou N; McNerney ME
    Leukemia; 2022 May; 36(5):1421-1425. PubMed ID: 35034954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Application of clustered regularly interspaced short palindromic repeats- associated protein 9 gene editing technology for treatment of HBV infection].
    Wang YD; Liang QF; Li ZY; Zhao CY
    Zhonghua Gan Zang Bing Za Zhi; 2018 Nov; 26(11):860-864. PubMed ID: 30616324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo Engineering of Chromosome 19 q-arm by Employing the CRISPR/AsCpf1 and ddAsCpf1 Systems in Human Malignant Gliomas (Hypothesis).
    Abak A; Shoorei H; Taheri M; Ghafouri-Fard S
    J Mol Neurosci; 2021 Aug; 71(8):1648-1663. PubMed ID: 33990905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR genome editing in stem cells turns to gold.
    Asokan A
    Nat Mater; 2019 Oct; 18(10):1038-1039. PubMed ID: 31537943
    [No Abstract]   [Full Text] [Related]  

  • 6. Strategies for Optimization of the Clustered Regularly Interspaced Short Palindromic Repeat-Based Genome Editing System for Enhanced Editing Specificity.
    Wang YM; Wang HZ; Jian YZ; Luo ZT; Shao HW; Zhang WF
    Hum Gene Ther; 2022 Apr; 33(7-8):358-370. PubMed ID: 34963339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. E Pluribus Unum ("Out of Many, One"): CRISPR Modeling of Myeloid Expansion.
    Shin J; Corn JE
    Cell Stem Cell; 2017 Oct; 21(4):415-416. PubMed ID: 28985519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clustered Regularly Interspaced Short Palindromic Repeats System of Genome Engineering in Embryos to Repair Genes.
    Niazvand F; Fathinezhad Z; Alfuraiji N; Etajuri EA; Amini-Chermahini F; Chehelgerdi M; Ranjbar R
    J Biomed Nanotechnol; 2021 Mar; 17(3):331-356. PubMed ID: 33875070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Research advances on the development and application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein system].
    Tan JJ; Peng YZ; Huang GT
    Zhonghua Shao Shang Za Zhi; 2021 Jul; 37(7):681-687. PubMed ID: 34304411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide Analysis of Off-Target CRISPR/Cas9 Activity in Single-Cell-Derived Human Hematopoietic Stem and Progenitor Cell Clones.
    Smith RH; Chen YC; Seifuddin F; Hupalo D; Alba C; Reger R; Tian X; Araki D; Dalgard CL; Childs RW; Pirooznia M; Larochelle A
    Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33322084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.
    Doetschman T; Georgieva T
    Circ Res; 2017 Mar; 120(5):876-894. PubMed ID: 28254804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-efficiency CRISPR induction of t(9;11) chromosomal translocations and acute leukemias in human blood stem cells.
    Jeong J; Jager A; Domizi P; Pavel-Dinu M; Gojenola L; Iwasaki M; Wei MC; Pan F; Zehnder JL; Porteus MH; Davis KL; Cleary ML
    Blood Adv; 2019 Oct; 3(19):2825-2835. PubMed ID: 31582391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of the CRISPR-Cpf1 system with ribozyme-processed crRNA.
    Gao Z; Herrera-Carrillo E; Berkhout B
    RNA Biol; 2018; 15(12):1458-1467. PubMed ID: 30470168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene Editing in 3D Cultured Nephron Progenitor Cell Lines.
    Li Z; Araoka T; Belmonte JCI
    Methods Mol Biol; 2019; 1926():151-159. PubMed ID: 30742270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene Editing of Human Hematopoietic Stem and Progenitor Cells: Promise and Potential Hurdles.
    Yu KR; Natanson H; Dunbar CE
    Hum Gene Ther; 2016 Oct; 27(10):729-740. PubMed ID: 27483988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A path to efficient gene editing.
    Urnov FD
    Nat Med; 2018 Jul; 24(7):899-900. PubMed ID: 29988144
    [No Abstract]   [Full Text] [Related]  

  • 17. CRISPR: Stressed about p53?
    Foronda M; Dow LE
    Trends Mol Med; 2018 Sep; 24(9):731-733. PubMed ID: 30017531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Cpf1: A New Tool for Plant Genome Editing.
    Zaidi SS; Mahfouz MM; Mansoor S
    Trends Plant Sci; 2017 Jul; 22(7):550-553. PubMed ID: 28532598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR)-Based Diagnostic Assays Assisted by Micro/Nanotechnologies.
    Yue H; Huang M; Tian T; Xiong E; Zhou X
    ACS Nano; 2021 May; 15(5):7848-7859. PubMed ID: 33961413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome Editing: The Recent History and Perspective in Cardiovascular Diseases.
    Musunuru K
    J Am Coll Cardiol; 2017 Dec; 70(22):2808-2821. PubMed ID: 29191331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.