These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 37322978)
1. Predicting the prognosis of HER2-positive breast cancer patients by fusing pathological whole slide images and clinical features using multiple instance learning. Wang Y; Zhang L; Li Y; Wu F; Cao S; Ye F Math Biosci Eng; 2023 Apr; 20(6):11196-11211. PubMed ID: 37322978 [TBL] [Abstract][Full Text] [Related]
2. Prediction of HER2-positive breast cancer recurrence and metastasis risk from histopathological images and clinical information via multimodal deep learning. Yang J; Ju J; Guo L; Ji B; Shi S; Yang Z; Gao S; Yuan X; Tian G; Liang Y; Yuan P Comput Struct Biotechnol J; 2022; 20():333-342. PubMed ID: 35035786 [TBL] [Abstract][Full Text] [Related]
3. Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts. Fremond S; Andani S; Barkey Wolf J; Dijkstra J; Melsbach S; Jobsen JJ; Brinkhuis M; Roothaan S; Jurgenliemk-Schulz I; Lutgens LCHW; Nout RA; van der Steen-Banasik EM; de Boer SM; Powell ME; Singh N; Mileshkin LR; Mackay HJ; Leary A; Nijman HW; Smit VTHBM; Creutzberg CL; Horeweg N; Koelzer VH; Bosse T Lancet Digit Health; 2023 Feb; 5(2):e71-e82. PubMed ID: 36496303 [TBL] [Abstract][Full Text] [Related]
4. Deep learning radiopathomics based on preoperative US images and biopsy whole slide images can distinguish between luminal and non-luminal tumors in early-stage breast cancers. Huang Y; Yao Z; Li L; Mao R; Huang W; Hu Z; Hu Y; Wang Y; Guo R; Tang X; Yang L; Wang Y; Luo R; Yu J; Zhou J EBioMedicine; 2023 Aug; 94():104706. PubMed ID: 37478528 [TBL] [Abstract][Full Text] [Related]
5. Prediction of clinicopathological features, multi-omics events and prognosis based on digital pathology and deep learning in HR Hu J; Lv H; Zhao S; Lin CJ; Su GH; Shao ZM J Thorac Dis; 2023 May; 15(5):2528-2543. PubMed ID: 37324098 [TBL] [Abstract][Full Text] [Related]
6. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. Kather JN; Krisam J; Charoentong P; Luedde T; Herpel E; Weis CA; Gaiser T; Marx A; Valous NA; Ferber D; Jansen L; Reyes-Aldasoro CC; Zörnig I; Jäger D; Brenner H; Chang-Claude J; Hoffmeister M; Halama N PLoS Med; 2019 Jan; 16(1):e1002730. PubMed ID: 30677016 [TBL] [Abstract][Full Text] [Related]
7. ICSDA: a multi-modal deep learning model to predict breast cancer recurrence and metastasis risk by integrating pathological, clinical and gene expression data. Yao Y; Lv Y; Tong L; Liang Y; Xi S; Ji B; Zhang G; Li L; Tian G; Tang M; Hu X; Li S; Yang J Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36242564 [TBL] [Abstract][Full Text] [Related]
8. Prototypical multiple instance learning for predicting lymph node metastasis of breast cancer from whole-slide pathological images. Yu JG; Wu Z; Ming Y; Deng S; Li Y; Ou C; He C; Wang B; Zhang P; Wang Y Med Image Anal; 2023 Apr; 85():102748. PubMed ID: 36731274 [TBL] [Abstract][Full Text] [Related]
9. TGMIL: A hybrid multi-instance learning model based on the Transformer and the Graph Attention Network for whole-slide images classification of renal cell carcinoma. Sun X; Li W; Fu B; Peng Y; He J; Wang L; Yang T; Meng X; Li J; Wang J; Huang P; Wang R Comput Methods Programs Biomed; 2023 Dec; 242():107789. PubMed ID: 37722310 [TBL] [Abstract][Full Text] [Related]
10. A multivariable prognostic score to guide systemic therapy in early-stage HER2-positive breast cancer: a retrospective study with an external evaluation. Prat A; Guarneri V; Paré L; Griguolo G; Pascual T; Dieci MV; Chic N; González-Farré B; Frassoldati A; Sanfeliu E; Cejalvo JM; Muñoz M; Bisagni G; Brasó-Maristany F; Urso L; Vidal M; Brandes AA; Adamo B; Musolino A; Miglietta F; Conte B; Oliveira M; Saura C; Pernas S; Alarcón J; Llombart-Cussac A; Cortés J; Manso L; López R; Ciruelos E; Schettini F; Villagrasa P; Carey LA; Perou CM; Piacentini F; D'Amico R; Tagliafico E; Parker JS; Conte P Lancet Oncol; 2020 Nov; 21(11):1455-1464. PubMed ID: 33152285 [TBL] [Abstract][Full Text] [Related]
11. Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review. Chen JM; Li Y; Xu J; Gong L; Wang LW; Liu WL; Liu J Tumour Biol; 2017 Mar; 39(3):1010428317694550. PubMed ID: 28347240 [TBL] [Abstract][Full Text] [Related]
12. Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis. Rana A; Lowe A; Lithgow M; Horback K; Janovitz T; Da Silva A; Tsai H; Shanmugam V; Bayat A; Shah P JAMA Netw Open; 2020 May; 3(5):e205111. PubMed ID: 32432709 [TBL] [Abstract][Full Text] [Related]
13. Early prediction of treatment response to neoadjuvant chemotherapy based on longitudinal ultrasound images of HER2-positive breast cancer patients by Siamese multi-task network: A multicentre, retrospective cohort study. Liu Y; Wang Y; Wang Y; Xie Y; Cui Y; Feng S; Yao M; Qiu B; Shen W; Chen D; Du G; Chen X; Liu Z; Li Z; Yang X; Liang C; Wu L EClinicalMedicine; 2022 Oct; 52():101562. PubMed ID: 35928032 [TBL] [Abstract][Full Text] [Related]
14. Deep learning trained on hematoxylin and eosin tumor region of Interest predicts HER2 status and trastuzumab treatment response in HER2+ breast cancer. Farahmand S; Fernandez AI; Ahmed FS; Rimm DL; Chuang JH; Reisenbichler E; Zarringhalam K Mod Pathol; 2022 Jan; 35(1):44-51. PubMed ID: 34493825 [TBL] [Abstract][Full Text] [Related]
15. Analytical Validation of the PreciseDx Digital Prognostic Breast Cancer Test in Early-Stage Breast Cancer. Fernandez G; Zeineh J; Prastawa M; Scott R; Madduri AS; Shtabsky A; Jaffer S; Feliz A; Veremis B; Mejias JC; Charytonowicz E; Gladoun N; Koll G; Cruz K; Malinowski D; Donovan MJ Clin Breast Cancer; 2024 Feb; 24(2):93-102.e6. PubMed ID: 38114366 [TBL] [Abstract][Full Text] [Related]
16. Data-Efficient Computational Pathology Platform for Faster and Cheaper Breast Cancer Subtype Identifications: Development of a Deep Learning Model. Bae K; Jeon YS; Hwangbo Y; Yoo CW; Han N; Feng M JMIR Cancer; 2023 Sep; 9():e45547. PubMed ID: 37669090 [TBL] [Abstract][Full Text] [Related]
17. Biased data, biased AI: deep networks predict the acquisition site of TCGA images. Dehkharghanian T; Bidgoli AA; Riasatian A; Mazaheri P; Campbell CJV; Pantanowitz L; Tizhoosh HR; Rahnamayan S Diagn Pathol; 2023 May; 18(1):67. PubMed ID: 37198691 [TBL] [Abstract][Full Text] [Related]
18. Automated quantitative analysis of Ki-67 staining and HE images recognition and registration based on whole tissue sections in breast carcinoma. Feng M; Deng Y; Yang L; Jing Q; Zhang Z; Xu L; Wei X; Zhou Y; Wu D; Xiang F; Wang Y; Bao J; Bu H Diagn Pathol; 2020 May; 15(1):65. PubMed ID: 32471471 [TBL] [Abstract][Full Text] [Related]
19. Computer-extracted features of nuclear morphology in hematoxylin and eosin images distinguish stage II and IV colon tumors. Kumar N; Verma R; Chen C; Lu C; Fu P; Willis J; Madabhushi A J Pathol; 2022 May; 257(1):17-28. PubMed ID: 35007352 [TBL] [Abstract][Full Text] [Related]
20. HAHNet: a convolutional neural network for HER2 status classification of breast cancer. Wang J; Zhu X; Chen K; Hao L; Liu Y BMC Bioinformatics; 2023 Sep; 24(1):353. PubMed ID: 37730567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]