BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37486517)

  • 1. Using CRISPR/Cas9 to Edit a Thyroid Cancer Cell Line.
    Fuziwara CS; Kimura ET
    Adv Exp Med Biol; 2023; 1429():73-84. PubMed ID: 37486517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting the Highly Expressed microRNA miR-146b with CRISPR/Cas9n Gene Editing System in Thyroid Cancer.
    Santa-Inez DC; Fuziwara CS; Saito KC; Kimura ET
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of CRISPR-Cas9 for Long Noncoding RNA Genes in Cancer Research.
    Zhen S; Li X
    Hum Gene Ther; 2019 Jan; 30(1):3-9. PubMed ID: 30045635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Novel Insulin Resistance Related ceRNA Network in T2DM and Its Potential Editing by CRISPR/Cas9.
    Matboli M; Kamel MM; Essawy N; Bekhit MM; Abdulrahman B; Mohamed GF; Eissa S
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vivo CRISPR/Cas9-Based Targeted Disruption and Knockin of a Long Noncoding RNA.
    Cheng X; Peters ST; Pruett-Miller SM; Saunders TL; Joe B
    Methods Mol Biol; 2021; 2254():305-321. PubMed ID: 33326084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9 Genome Editing of Epidermal Growth Factor Receptor Sufficiently Abolished Oncogenicity in Anaplastic Thyroid Cancer.
    Huang LC; Tam KW; Liu WN; Lin CY; Hsu KW; Hsieh WS; Chi WM; Lee AW; Yang JM; Lin CL; Lee CH
    Dis Markers; 2018; 2018():3835783. PubMed ID: 29849821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9-mediated noncoding RNA editing in human cancers.
    Yang J; Meng X; Pan J; Jiang N; Zhou C; Wu Z; Gong Z
    RNA Biol; 2018 Jan; 15(1):35-43. PubMed ID: 29028415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas9, A Promising Therapeutic Tool for Cancer Therapy: A Review.
    Akram F; Ikram Ul Haq ; Ahmed Z; Khan H; Ali MS
    Protein Pept Lett; 2020; 27(10):931-944. PubMed ID: 32264803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic Editing of Long Noncoding RNA Using CRISPR/Cas9 Technology.
    Larter K; Yi B; Xi Y
    Methods Mol Biol; 2021; 2372():169-177. PubMed ID: 34417751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging Role of CRISPR/Cas9 Technology for MicroRNAs Editing in Cancer Research.
    Aquino-Jarquin G
    Cancer Res; 2017 Dec; 77(24):6812-6817. PubMed ID: 29208606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-cas9 genome editing delivery systems for targeted cancer therapy.
    Ghaemi A; Bagheri E; Abnous K; Taghdisi SM; Ramezani M; Alibolandi M
    Life Sci; 2021 Feb; 267():118969. PubMed ID: 33385410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marek's Disease Virus-Encoded MicroRNA 155 Ortholog Critical for the Induction of Lymphomas Is Not Essential for the Proliferation of Transformed Cell Lines.
    Zhang Y; Tang N; Luo J; Teng M; Moffat K; Shen Z; Watson M; Nair V; Yao Y
    J Virol; 2019 Sep; 93(17):. PubMed ID: 31189706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment.
    Jiang C; Meng L; Yang B; Luo X
    Clin Genet; 2020 Jan; 97(1):73-88. PubMed ID: 31231788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9 small promoter deletion in H19 lncRNA is associated with altered cell morphology and proliferation.
    da Silva Santos R; Pinheiro DP; Teixeira LPR; Sales SLA; Dos Santos Luciano MC; de Lima Melo MM; Pinheiro RF; Tavares KCS; Furtado GP; Pessoa C; Furtado CLM
    Sci Rep; 2021 Sep; 11(1):18380. PubMed ID: 34526543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment.
    Liu B; Saber A; Haisma HJ
    Drug Discov Today; 2019 Apr; 24(4):955-970. PubMed ID: 30849442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long noncoding RNA HIT000218960 promotes papillary thyroid cancer oncogenesis and tumor progression by upregulating the expression of high mobility group AT-hook 2 (HMGA2) gene.
    Li T; Yang XD; Ye CX; Shen ZL; Yang Y; Wang B; Guo P; Gao ZD; Ye YJ; Jiang KW; Wang S
    Cell Cycle; 2017 Jan; 16(2):224-231. PubMed ID: 27929737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thyroid Follicular Cell Loss of Differentiation Induced by MicroRNA miR-17-92 Cluster Is Attenuated by CRISPR/Cas9n Gene Silencing in Anaplastic Thyroid Cancer.
    Fuziwara CS; Saito KC; Kimura ET
    Thyroid; 2020 Jan; 30(1):81-94. PubMed ID: 31578932
    [No Abstract]   [Full Text] [Related]  

  • 18. Long Non-Coding RNAs in Thyroid Cancer: Implications for Pathogenesis, Diagnosis, and Therapy.
    Mahmoudian-Sani MR; Jalali A; Jamshidi M; Moridi H; Alghasi A; Shojaeian A; Mobini GR
    Oncol Res Treat; 2019; 42(3):136-142. PubMed ID: 30799425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient CRISPR/Cas9 platform for targeted genome editing in rose (Rosa hybrida).
    Wang C; Li Y; Wang N; Yu Q; Li Y; Gao J; Zhou X; Ma N
    J Integr Plant Biol; 2023 Apr; 65(4):895-899. PubMed ID: 36460630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long noncoding RNA LINC00313 modulates papillary thyroid cancer tumorigenesis via sponging miR-4429.
    Wu WJ; Yin H; Hu JJ; Wei XZ
    Neoplasma; 2018 Nov; 65(6):933-942. PubMed ID: 29940766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.