BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37945316)

  • 1. Biallelic inactivation of the NF1 tumour suppressor gene in juvenile myelomonocytic leukaemia: Genetic evidence of driver function and implications for diagnostic workup.
    Ramamoorthy S; Lebrecht D; Schanze D; Schanze I; Wieland I; Andrieux G; Metzger P; Hess M; Albert MH; Borkhardt A; Bresters D; Buechner J; Catala A; De Haas V; Dworzak M; Erlacher M; Hasle H; Jahnukainen K; Locatelli F; Masetti R; Stary J; Turkiewicz D; Vinci L; Wlodarski MW; Yoshimi A; Boerries M; Niemeyer CM; Zenker M; Flotho C
    Br J Haematol; 2024 Feb; 204(2):595-605. PubMed ID: 37945316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitotic recombination and compound-heterozygous mutations are predominant NF1-inactivating mechanisms in children with juvenile myelomonocytic leukemia and neurofibromatosis type 1.
    Steinemann D; Arning L; Praulich I; Stuhrmann M; Hasle H; Stary J; Schlegelberger B; Niemeyer CM; Flotho C
    Haematologica; 2010 Feb; 95(2):320-3. PubMed ID: 20015894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide single-nucleotide polymorphism analysis in juvenile myelomonocytic leukemia identifies uniparental disomy surrounding the NF1 locus in cases associated with neurofibromatosis but not in cases with mutant RAS or PTPN11.
    Flotho C; Steinemann D; Mullighan CG; Neale G; Mayer K; Kratz CP; Schlegelberger B; Downing JR; Niemeyer CM
    Oncogene; 2007 Aug; 26(39):5816-21. PubMed ID: 17353900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Germline Neurofibromin 1 mutation enhances the anti-tumour immune response and decreases juvenile myelomonocytic leukaemia tumourigenicity.
    Wang W; Li X; Qin X; Miao Y; Zhang Y; Li S; Yao R; Yang Y; Yu L; Zhu H; Song L; Mao S; Wang X; Chen J; Feng H; Li Y
    Br J Haematol; 2023 Jul; 202(2):328-343. PubMed ID: 37144690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Juvenile myelomonocytic leukemia: who's the driver at the wheel?
    Niemeyer CM; Flotho C
    Blood; 2019 Mar; 133(10):1060-1070. PubMed ID: 30670449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. JMML genomics and decisions.
    Niemeyer CM
    Hematology Am Soc Hematol Educ Program; 2018 Nov; 2018(1):307-312. PubMed ID: 30504325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Juvenile myelomonocytic leukemia - A bona fide RASopathy syndrome.
    Lasho T; Patnaik MM
    Best Pract Res Clin Haematol; 2020 Jun; 33(2):101171. PubMed ID: 32460983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations of the NF1 gene in children with juvenile myelomonocytic leukemia without clinical evidence of neurofibromatosis, type 1.
    Side LE; Emanuel PD; Taylor B; Franklin J; Thompson P; Castleberry RP; Shannon KM
    Blood; 1998 Jul; 92(1):267-72. PubMed ID: 9639526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. After 95 years, it's time to eRASe JMML.
    Meynier S; Rieux-Laucat F
    Blood Rev; 2020 Sep; 43():100652. PubMed ID: 31980238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of RAS pathway mutations in juvenile myelomonocytic leukaemia: a single-institution study from Korea.
    Kim HS; Lee JW; Kang D; Yu H; Kim Y; Kang H; Lee JM; Ahn A; Cho B; Kim S; Chung NG; Kim Y; Kim M
    Br J Haematol; 2021 Dec; 195(5):748-756. PubMed ID: 34590720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Juvenile myelomonocytic leukemias].
    Lachenaud J; Strullu M; Baruchel A; Cavé H
    Bull Cancer; 2014 Mar; 101(3):302-13. PubMed ID: 24691193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations of an E3 ubiquitin ligase c-Cbl but not TET2 mutations are pathogenic in juvenile myelomonocytic leukemia.
    Muramatsu H; Makishima H; Jankowska AM; Cazzolli H; O'Keefe C; Yoshida N; Xu Y; Nishio N; Hama A; Yagasaki H; Takahashi Y; Kato K; Manabe A; Kojima S; Maciejewski JP
    Blood; 2010 Mar; 115(10):1969-75. PubMed ID: 20008299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nf1 mutant mice with p19ARF gene loss develop accelerated hematopoietic disease resembling acute leukemia with a variable phenotype.
    Wiesner SM; Geurts JL; Diers MD; Bergerson RJ; Hasz DE; Morgan KJ; Largaespada DA
    Am J Hematol; 2011 Jul; 86(7):579-85. PubMed ID: 21681782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Somatic mosaicism for oncogenic NRAS mutations in juvenile myelomonocytic leukemia.
    Doisaki S; Muramatsu H; Shimada A; Takahashi Y; Mori-Ezaki M; Sato M; Kawaguchi H; Kinoshita A; Sotomatsu M; Hayashi Y; Furukawa-Hibi Y; Yamada K; Hoshino H; Kiyoi H; Yoshida N; Sakaguchi H; Narita A; Wang X; Ismael O; Xu Y; Nishio N; Tanaka M; Hama A; Koike K; Kojima S
    Blood; 2012 Aug; 120(7):1485-8. PubMed ID: 22753870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A child with juvenile myelomonocytic leukemia possessing a concurrent germline CBL mutation and a NF1 variant of uncertain significance: A rare case with a common problem in the era of high-throughput sequencing.
    Wang WH; Lu MY; Tsai CH; Wang SC; Chou SW; Jou ST
    J Formos Med Assoc; 2021 Apr; 120(4):1148-1152. PubMed ID: 32933826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectrum of molecular defects in juvenile myelomonocytic leukaemia includes ASXL1 mutations.
    Sugimoto Y; Muramatsu H; Makishima H; Prince C; Jankowska AM; Yoshida N; Xu Y; Nishio N; Hama A; Yagasaki H; Takahashi Y; Kato K; Manabe A; Kojima S; Maciejewski JP
    Br J Haematol; 2010 Jul; 150(1):83-7. PubMed ID: 20408841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA fingerprints in juvenile myelomonocytic leukemia (JMML) identified miR-150-5p as a tumor suppressor and potential target for treatment.
    Leoncini PP; Bertaina A; Papaioannou D; Flotho C; Masetti R; Bresolin S; Menna G; Santoro N; Zecca M; Basso G; Nigita G; Veneziano D; Pagotto S; D'Ovidio K; Rota R; Dorrance A; Croce CM; Niemeyer C; Locatelli F; Garzon R
    Oncotarget; 2016 Aug; 7(34):55395-55408. PubMed ID: 27447965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia.
    Sakaguchi H; Okuno Y; Muramatsu H; Yoshida K; Shiraishi Y; Takahashi M; Kon A; Sanada M; Chiba K; Tanaka H; Makishima H; Wang X; Xu Y; Doisaki S; Hama A; Nakanishi K; Takahashi Y; Yoshida N; Maciejewski JP; Miyano S; Ogawa S; Kojima S
    Nat Genet; 2013 Aug; 45(8):937-41. PubMed ID: 23832011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in the pathogenesis and management of juvenile myelomonocytic leukaemia.
    Koike K; Matsuda K
    Br J Haematol; 2008 May; 141(5):567-75. PubMed ID: 18422786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RAS Pathway Mutation Patterns in Patients With Juvenile Myelomonocytic Leukemia: A Developing Country Single-center Experience.
    Hamdy N; Bokhary H; Elsayed A; Hozayn W; Soliman S; Salem S; Alsheshtawi K; Abdalla A; Hafez H; Hammad M
    Clin Lymphoma Myeloma Leuk; 2020 Jul; 20(7):e368-e374. PubMed ID: 32209330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.