BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38180088)

  • 1. Attenuated cell cycle and DNA damage response transcriptome signatures and overrepresented cell adhesion processes imply accelerated progression in patients with lower-risk myelodysplastic neoplasms.
    Kaisrlikova M; Kundrat D; Koralkova P; Trsova I; Lenertova Z; Votavova H; Merkerova MD; Krejcik Z; Vesela J; Vostry M; Simeckova R; Markova MS; Lauermannova M; Jonasova A; Cermak J; Divoky V; Belickova M
    Int J Cancer; 2024 May; 154(9):1652-1668. PubMed ID: 38180088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RUNX1 mutations contribute to the progression of MDS due to disruption of antitumor cellular defense: a study on patients with lower-risk MDS.
    Kaisrlikova M; Vesela J; Kundrat D; Votavova H; Dostalova Merkerova M; Krejcik Z; Divoky V; Jedlicka M; Fric J; Klema J; Mikulenkova D; Stastna Markova M; Lauermannova M; Mertova J; Soukupova Maaloufova J; Jonasova A; Cermak J; Belickova M
    Leukemia; 2022 Jul; 36(7):1898-1906. PubMed ID: 35505182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increase of DNA damage and alteration of the DNA damage response in myelodysplastic syndromes and acute myeloid leukemias.
    Popp HD; Naumann N; Brendel S; Henzler T; Weiss C; Hofmann WK; Fabarius A
    Leuk Res; 2017 Jun; 57():112-118. PubMed ID: 28359030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of the DNA damage response in acute myeloid leukemia versus myelodysplastic syndrome.
    Boehrer S; Adès L; Tajeddine N; Hofmann WK; Kriener S; Bug G; Ottmann OG; Ruthardt M; Galluzzi L; Fouassier C; Tailler M; Olaussen KA; Gardin C; Eclache V; de Botton S; Thepot S; Fenaux P; Kroemer G
    Oncogene; 2009 Jun; 28(22):2205-18. PubMed ID: 19398952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells.
    Dolatshad H; Pellagatti A; Fernandez-Mercado M; Yip BH; Malcovati L; Attwood M; Przychodzen B; Sahgal N; Kanapin AA; Lockstone H; Scifo L; Vandenberghe P; Papaemmanuil E; Smith CW; Campbell PJ; Ogawa S; Maciejewski JP; Cazzola M; Savage KI; Boultwood J
    Leukemia; 2015 May; 29(5):1092-103. PubMed ID: 25428262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effects of Human BDH2 on the Cell Cycle, Differentiation, and Apoptosis and Associations with Leukemia Transformation in Myelodysplastic Syndrome.
    Yang WC; Lin SF; Wang SC; Tsai WC; Wu CC; Wu SC
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32344823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long non-coding RNA HOXB-AS3 promotes myeloid cell proliferation and its higher expression is an adverse prognostic marker in patients with acute myeloid leukemia and myelodysplastic syndrome.
    Huang HH; Chen FY; Chou WC; Hou HA; Ko BS; Lin CT; Tang JL; Li CC; Yao M; Tsay W; Hsu SC; Wu SJ; Chen CY; Huang SY; Tseng MH; Tien HF; Chen RH
    BMC Cancer; 2019 Jun; 19(1):617. PubMed ID: 31234830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The NAE inhibitor pevonedistat interacts with the HDAC inhibitor belinostat to target AML cells by disrupting the DDR.
    Zhou L; Chen S; Zhang Y; Kmieciak M; Leng Y; Li L; Lin H; Rizzo KA; Dumur CI; Ferreira-Gonzalez A; Rahmani M; Povirk L; Chalasani S; Berger AJ; Dai Y; Grant S
    Blood; 2016 May; 127(18):2219-30. PubMed ID: 26851293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinformatics analysis deciphering the transcriptomic signatures associated with signalling pathways and prognosis in the myelodysplastic syndromes.
    Tuerxun N; Wang J; Zhao F; Qin YT; Wang H; Chen R; Hao JP
    Hematology; 2022 Dec; 27(1):214-231. PubMed ID: 35134316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome analysis of CD34+ cells from myelodysplastic syndrome patients.
    Ou R; Huang J; Shen H; Liu Z; Zhu Y; Zhong Q; Zheng L; Yao M; She Y; Zhou S; Chen R; Li C; Zhang Q; Liu S
    Leuk Res; 2017 Nov; 62():40-50. PubMed ID: 28982058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct splicing signatures affect converged pathways in myelodysplastic syndrome patients carrying mutations in different splicing regulators.
    Qiu J; Zhou B; Thol F; Zhou Y; Chen L; Shao C; DeBoever C; Hou J; Li H; Chaturvedi A; Ganser A; Bejar R; Zhang DE; Fu XD; Heuser M
    RNA; 2016 Oct; 22(10):1535-49. PubMed ID: 27492256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased expression of HERG K
    Lu L; Du W; Liu W; Guo D; He X; Li H
    Hematology; 2016 Dec; 21(10):583-592. PubMed ID: 27077769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longitudinal Analysis of DNA Methylation in CD34+ Hematopoietic Progenitors in Myelodysplastic Syndrome.
    Wong YF; Micklem CN; Taguchi M; Itonaga H; Sawayama Y; Imanishi D; Nishikawa S; Miyazaki Y; Jakt LM
    Stem Cells Transl Med; 2014 Oct; 3(10):1188-98. PubMed ID: 25122688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aberrant promotor methylation in MDS hematopoietic cells during in vitro lineage specific differentiation is differently associated with DNMT isoforms.
    Hopfer O; Komor M; Koehler IS; Freitag C; Schulze M; Hoelzer D; Thiel E; Hofmann WK
    Leuk Res; 2009 Mar; 33(3):434-42. PubMed ID: 18829110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of miR-125a in myelodysplastic syndrome CD34+ cells modulates NF-κB activation and enhances erythroid differentiation arrest.
    Gañán-Gómez I; Wei Y; Yang H; Pierce S; Bueso-Ramos C; Calin G; Boyano-Adánez Mdel C; García-Manero G
    PLoS One; 2014; 9(4):e93404. PubMed ID: 24690917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Over expression of mTOR gene predicts overall survival in myelodysplastic syndromes.
    Maurya N; Mohanty P; Panchal P; Shanmukhaiah C; Vundinti BR
    Mol Biol Rep; 2023 Jan; 50(1):235-244. PubMed ID: 36322239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of lower risk myelodysplastic syndrome progression: factors predicting progression to high-risk myelodysplastic syndrome and acute myeloid leukemia.
    Jain AG; Ball S; Aguirre L; Al Ali N; Kaldas D; Tinsley-Vance S; Kuykendall A; Chan O; Sweet K; Lancet JE; Padron E; Sallman DA; Komrokji R
    Haematologica; 2024 Feb; ():. PubMed ID: 38299605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic basis of myelodysplastic syndromes.
    Ogawa S
    Proc Jpn Acad Ser B Phys Biol Sci; 2020; 96(3):107-121. PubMed ID: 32161209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining the mutational profile of lower-risk myelodysplastic neoplasm patients with respect to disease progression using next-generation sequencing and pyrosequencing.
    Adamska M; Kowal-Wiśniewska E; Czerwińska-Rybak J; Kiwerska K; Barańska M; Gronowska W; Loba J; Brzeźniakiewicz-Janus K; Wasilewska E; Łanocha A; Jarmuż-Szymczak M; Gil L
    Contemp Oncol (Pozn); 2023; 27(4):269-279. PubMed ID: 38405213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered oncoprotein expression and apoptosis in myelodysplastic syndrome marrow cells.
    Rajapaksa R; Ginzton N; Rott LS; Greenberg PL
    Blood; 1996 Dec; 88(11):4275-87. PubMed ID: 8943864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.