BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38346047)

  • 1. Therapeutic interventions on human breast cancer xenografts promote systemic dissemination of oncogenes.
    Raghuram GV; Pal K; Sriram G; Khan A; Joshi R; Jadhav V; Shinde S; Shaikh A; Rane B; Kangne H; Mittra I
    PLoS One; 2024; 19(2):e0298042. PubMed ID: 38346047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-free chromatin particles released from dying cancer cells activate immune checkpoints in human lymphocytes: implications for cancer therapy.
    Shabrish S; Pal K; Khare NK; Satsangi D; Pilankar A; Jadhav V; Shinde S; Raphael N; Sriram G; Lopes R; Raghuram GV; Tandel H; Mittra I
    Front Immunol; 2023; 14():1331491. PubMed ID: 38274821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pro-oxidant combination of resveratrol and copper down-regulates hallmarks of cancer and immune checkpoints in patients with advanced oral cancer: Results of an exploratory study (RESCU 004).
    Pilankar A; Singhavi H; Raghuram GV; Siddiqui S; Khare NK; Jadhav V; Tandel H; Pal K; Bhattacharjee A; Chaturvedi P; Mittra I
    Front Oncol; 2022; 12():1000957. PubMed ID: 36185249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting the damaging effects of ROS for therapeutic use by deactivating cell-free chromatin: the alchemy of resveratrol and copper.
    Mittra I
    Front Pharmacol; 2024; 15():1345786. PubMed ID: 38455966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-free chromatin particles released from dying cells inflict mitochondrial damage and ROS production in living cells.
    Raghuram GV; Tripathy BK; Avadhani K; Shabrish S; Khare NK; Lopes R; Pal K; Mittra I
    Cell Death Discov; 2024 Jan; 10(1):30. PubMed ID: 38225229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pro-oxidant combination of resveratrol and copper reduces chemotherapy-related non-haematological toxicities in advanced gastric cancer: results of a prospective open label phase II single-arm study (RESCU III study).
    Ostwal V; Ramaswamy A; Bhargava P; Srinivas S; Mandavkar S; Chaugule D; Peelay Z; Baheti A; Tandel H; Jadhav VK; Shinde S; Jadhav S; Gota V; Mittra I
    Med Oncol; 2022 Nov; 40(1):17. PubMed ID: 36372825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adeno-associated virus type 2 infection of nude mouse human breast cancer xenograft induces necrotic death and inhibits tumor growth.
    Alam S; Bowser BS; Israr M; Conway MJ; Meyers C
    Cancer Biol Ther; 2014 Aug; 15(8):1013-28. PubMed ID: 24834917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pro-oxidant combination of resveratrol and copper down-regulates multiple biological hallmarks of ageing and neurodegeneration in mice.
    Pal K; Raghuram GV; Dsouza J; Shinde S; Jadhav V; Shaikh A; Rane B; Tandel H; Kondhalkar D; Chaudhary S; Mittra I
    Sci Rep; 2022 Oct; 12(1):17209. PubMed ID: 36241685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preclinical recapitulation of antiangiogenic drug clinical efficacies using models of early or late stage breast cancer metastatis.
    Kerbel RS; Guerin E; Francia G; Xu P; Lee CR; Ebos JM; Man S
    Breast; 2013 Aug; 22 Suppl 2():S57-65. PubMed ID: 24074794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FGF13 promotes metastasis of triple-negative breast cancer.
    Johnstone CN; Pattison AD; Harrison PF; Powell DR; Lock P; Ernst M; Anderson RL; Beilharz TH
    Int J Cancer; 2020 Jul; 147(1):230-243. PubMed ID: 31957002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of clinically relevant in vivo metastasis models using human bone discs and breast cancer patient-derived xenografts.
    Lefley D; Howard F; Arshad F; Bradbury S; Brown H; Tulotta C; Eyre R; Alférez D; Wilkinson JM; Holen I; Clarke RB; Ottewell P
    Breast Cancer Res; 2019 Nov; 21(1):130. PubMed ID: 31783893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression profile analysis of an isogenic tumour metastasis model reveals a functional role for oncogene AF1Q in breast cancer metastasis.
    Li DQ; Hou YF; Wu J; Chen Y; Lu JS; Di GH; Ou ZL; Shen ZZ; Ding J; Shao ZM
    Eur J Cancer; 2006 Dec; 42(18):3274-86. PubMed ID: 16979889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective gene-expression profiling of migratory tumor cells in vivo predicts clinical outcome in breast cancer patients.
    Patsialou A; Wang Y; Lin J; Whitney K; Goswami S; Kenny PA; Condeelis JS
    Breast Cancer Res; 2012 Oct; 14(5):R139. PubMed ID: 23113900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Establishment of a bioluminescent MDA-MB-231 cell line for in vivo imaging of human triple-negative breast cancer xenograft].
    Wang K; Xie SM; He JJ; Ren Y; Xia HB; Zhang XW
    Nan Fang Yi Ke Da Xue Xue Bao; 2011 Nov; 31(11):1812-8. PubMed ID: 22126756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exosomal MMP-1 transfers metastasis potential in triple-negative breast cancer through PAR1-mediated EMT.
    Zhu Y; Tao Z; Chen Y; Lin S; Zhu M; Ji W; Liu X; Li T; Hu X
    Breast Cancer Res Treat; 2022 May; 193(1):65-81. PubMed ID: 35254603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epithelial requirement for in vitro proliferation and xenograft growth and metastasis of MDA-MB-468 human breast cancer cells: oncogenic rather than tumor-suppressive role of E-cadherin.
    Hugo HJ; Gunasinghe NPAD; Hollier BG; Tanaka T; Blick T; Toh A; Hill P; Gilles C; Waltham M; Thompson EW
    Breast Cancer Res; 2017 Jul; 19(1):86. PubMed ID: 28750639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aldehyde dehydrogenase 1A3 influences breast cancer progression via differential retinoic acid signaling.
    Marcato P; Dean CA; Liu RZ; Coyle KM; Bydoun M; Wallace M; Clements D; Turner C; Mathenge EG; Gujar SA; Giacomantonio CA; Mackey JR; Godbout R; Lee PW
    Mol Oncol; 2015 Jan; 9(1):17-31. PubMed ID: 25106087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of miR-155, a therapeutic target for breast cancer, prevented in cancer stem cell formation.
    Zuo J; Yu Y; Zhu M; Jing W; Yu M; Chai H; Liang C; Tu J
    Cancer Biomark; 2018 Feb; 21(2):383-392. PubMed ID: 29103027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human adipose tissue-derived stromal/stem cells promote migration and early metastasis of triple negative breast cancer xenografts.
    Rowan BG; Gimble JM; Sheng M; Anbalagan M; Jones RK; Frazier TP; Asher M; Lacayo EA; Friedlander PL; Kutner R; Chiu ES
    PLoS One; 2014; 9(2):e89595. PubMed ID: 24586900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using an in-vivo syngeneic spontaneous metastasis model identifies ID2 as a promoter of breast cancer colonisation in the brain.
    Kijewska M; Viski C; Turrell F; Fitzpatrick A; van Weverwijk A; Gao Q; Iravani M; Isacke CM
    Breast Cancer Res; 2019 Jan; 21(1):4. PubMed ID: 30642388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.