BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38678959)

  • 1. Lesion attention guided neural network for contrast-enhanced mammography-based biomarker status prediction in breast cancer.
    Qian N; Jiang W; Wu X; Zhang N; Yu H; Guo Y
    Comput Methods Programs Biomed; 2024 Jun; 250():108194. PubMed ID: 38678959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breast cancer diagnosis from contrast-enhanced mammography using multi-feature fusion neural network.
    Qian N; Jiang W; Guo Y; Zhu J; Qiu J; Yu H; Huang X
    Eur Radiol; 2024 Feb; 34(2):917-927. PubMed ID: 37610440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of contrast-enhanced spectral mammography (CESM) images.
    Perek S; Kiryati N; Zimmerman-Moreno G; Sklair-Levy M; Konen E; Mayer A
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):249-257. PubMed ID: 30367322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrast-Enhanced Mammography and Radiomics Analysis for Noninvasive Breast Cancer Characterization: Initial Results.
    Marino MA; Pinker K; Leithner D; Sung J; Avendano D; Morris EA; Jochelson M
    Mol Imaging Biol; 2020 Jun; 22(3):780-787. PubMed ID: 31463822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of mass regions in mammograms by bilateral analysis adapted to breast density using similarity indexes and convolutional neural networks.
    Bandeira Diniz JO; Bandeira Diniz PH; Azevedo Valente TL; Corrêa Silva A; de Paiva AC; Gattass M
    Comput Methods Programs Biomed; 2018 Mar; 156():191-207. PubMed ID: 29428071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer Learning From Convolutional Neural Networks for Computer-Aided Diagnosis: A Comparison of Digital Breast Tomosynthesis and Full-Field Digital Mammography.
    Mendel K; Li H; Sheth D; Giger M
    Acad Radiol; 2019 Jun; 26(6):735-743. PubMed ID: 30076083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep-learning model for background parenchymal enhancement classification in contrast-enhanced mammography.
    Ripaud E; Jailin C; Quintana GI; Milioni de Carvalho P; Sanchez de la Rosa R; Vancamberg L
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38657641
    [No Abstract]   [Full Text] [Related]  

  • 8. Deep feature-based automatic classification of mammograms.
    Arora R; Rai PK; Raman B
    Med Biol Eng Comput; 2020 Jun; 58(6):1199-1211. PubMed ID: 32200453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network.
    Kooi T; van Ginneken B; Karssemeijer N; den Heeten A
    Med Phys; 2017 Mar; 44(3):1017-1027. PubMed ID: 28094850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Representation learning for mammography mass lesion classification with convolutional neural networks.
    Arevalo J; González FA; Ramos-Pollán R; Oliveira JL; Guevara Lopez MA
    Comput Methods Programs Biomed; 2016 Apr; 127():248-57. PubMed ID: 26826901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BIRADS features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis.
    Zhang E; Seiler S; Chen M; Lu W; Gu X
    Phys Med Biol; 2020 Jun; 65(12):125005. PubMed ID: 32155605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CTG-Net: Cross-task guided network for breast ultrasound diagnosis.
    Yang K; Suzuki A; Ye J; Nosato H; Izumori A; Sakanashi H
    PLoS One; 2022; 17(8):e0271106. PubMed ID: 35951606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weakly Supervised Breast Lesion Detection in Dynamic Contrast-Enhanced MRI.
    Sun R; Wei C; Jiang Z; Huang G; Xie Y; Nie S
    J Digit Imaging; 2023 Aug; 36(4):1553-1564. PubMed ID: 37253896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images.
    Zhou J; Luo LY; Dou Q; Chen H; Chen C; Li GJ; Jiang ZF; Heng PA
    J Magn Reson Imaging; 2019 Oct; 50(4):1144-1151. PubMed ID: 30924997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformer guided self-adaptive network for multi-scale skin lesion image segmentation.
    Xin C; Liu Z; Ma Y; Wang D; Zhang J; Li L; Zhou Q; Xu S; Zhang Y
    Comput Biol Med; 2024 Feb; 169():107846. PubMed ID: 38184865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of segmentation-free and segmentation-dependent computer-aided diagnosis of breast masses on a public mammography dataset.
    Sawyer Lee R; Dunnmon JA; He A; Tang S; Ré C; Rubin DL
    J Biomed Inform; 2021 Jan; 113():103656. PubMed ID: 33309994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision.
    Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y
    Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer-aided diagnosis of contrast-enhanced spectral mammography: A feasibility study.
    Patel BK; Ranjbar S; Wu T; Pockaj BA; Li J; Zhang N; Lobbes M; Zhang B; Mitchell JR
    Eur J Radiol; 2018 Jan; 98():207-213. PubMed ID: 29279165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convolutional Neural Network Using a Breast MRI Tumor Dataset Can Predict Oncotype Dx Recurrence Score.
    Ha R; Chang P; Mutasa S; Karcich J; Goodman S; Blum E; Kalinsky K; Liu MZ; Jambawalikar S
    J Magn Reson Imaging; 2019 Feb; 49(2):518-524. PubMed ID: 30129697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peri-lesion regions in differentiating suspicious breast calcification-only lesions specifically on contrast enhanced mammography.
    Cao K; Gao F; Long R; Zhang FD; Huang CC; Cao M; Yu YZ; Sun YS
    J Xray Sci Technol; 2024; 32(3):583-596. PubMed ID: 38306089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.