BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38720294)

  • 1. Rutinosides-derived from Sarocladium strictum 6-O-α-rhamnosyl-β-glucosidase show enhanced anti-tumoral activity in pancreatic cancer cells.
    Weiz G; González AL; Mansilla IS; Fernandez-Zapico ME; Molejón MI; Breccia JD
    Microb Cell Fact; 2024 May; 23(1):133. PubMed ID: 38720294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The flavonoid degrading fungus Acremonium sp. DSM 24697 produces two diglycosidases with different specificities.
    Weiz G; Mazzaferro LS; Kotik M; Neher BD; Halada P; Křen V; Breccia JD
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9493-9504. PubMed ID: 31705182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acremonium sp. diglycosidase-aid chemical diversification: valorization of industry by-products.
    Baglioni M; Fries A; Müller JM; Omarini A; Müller M; Breccia JD; Mazzaferro LS
    Appl Microbiol Biotechnol; 2024 Mar; 108(1):250. PubMed ID: 38430417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme-mediated transglycosylation of rutinose (6-O-α-l-rhamnosyl-d-glucose) to phenolic compounds by a diglycosidase from Acremonium sp. DSM 24697.
    Mazzaferro LS; Weiz G; Braun L; Kotik M; Pelantová H; Křen V; Breccia JD
    Biotechnol Appl Biochem; 2019 Jan; 66(1):53-59. PubMed ID: 30294837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular monoenzyme deglycosylation system of 7-O-linked flavonoid beta-rutinosides and its disaccharide transglycosylation activity from Stilbella fimetaria.
    Mazzaferro L; Piñuel L; Minig M; Breccia JD
    Arch Microbiol; 2010 May; 192(5):383-93. PubMed ID: 20358178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transglycosylation specificity of Acremonium sp. α-rhamnosyl-β-glucosidase and its application to the synthesis of the new fluorogenic substrate 4-methylumbelliferyl-rutinoside.
    Mazzaferro LS; Piñuel L; Erra-Balsells R; Giudicessi SL; Breccia JD
    Carbohydr Res; 2012 Jan; 347(1):69-75. PubMed ID: 22169180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteria as source of diglycosidase activity: Actinoplanes missouriensis produces 6-O-α-L-rhamnosyl-β-D-glucosidase active on flavonoids.
    Neher BD; Mazzaferro LS; Kotik M; Oyhenart J; Halada P; Křen V; Breccia JD
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3061-70. PubMed ID: 26549237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. l-asparaginase production and enhancement by Sarocladium strictum: In vitro evaluation of anti-cancerous properties.
    Golbabaie A; Nouri H; Moghimi H; Khaleghian A
    J Appl Microbiol; 2020 Aug; 129(2):356-366. PubMed ID: 32119169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel Aspergillus oryzae diglycosidase that hydrolyzes 6-O-α-L-rhamnosyl-β-D-glucoside from flavonoids.
    Ishikawa M; Kawasaki M; Shiono Y; Koseki T
    Appl Microbiol Biotechnol; 2018 Apr; 102(7):3193-3201. PubMed ID: 29476400
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Błaszczyk L; Waśkiewicz A; Gromadzka K; Mikołajczak K; Chełkowski J
    Biomolecules; 2021 Jan; 11(1):. PubMed ID: 33451141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Berbamine enhances the antineoplastic activity of gemcitabine in pancreatic cancer cells by activating transforming growth factor-β/Smad signaling.
    Jin X; Wu Y
    Anat Rec (Hoboken); 2014 May; 297(5):802-9. PubMed ID: 24619961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium.
    Summerbell RC; Gueidan C; Schroers HJ; de Hoog GS; Starink M; Rosete YA; Guarro J; Scott JA
    Stud Mycol; 2011; 68():139-62. PubMed ID: 21523192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. α-Rhamnosyl-β-glucosidase-catalyzed reactions for analysis and biotransformations of plant-based foods.
    Minig M; Mazzaferro LS; Erra-Balsells R; Petroselli G; Breccia JD
    J Agric Food Chem; 2011 Oct; 59(20):11238-43. PubMed ID: 21834586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gemcitabine loaded autologous exosomes for effective and safe chemotherapy of pancreatic cancer.
    Li YJ; Wu JY; Wang JM; Hu XB; Cai JX; Xiang DX
    Acta Biomater; 2020 Jan; 101():519-530. PubMed ID: 31629893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting the apoptotic machinery in pancreatic cancers using small-molecule antagonists of the X-linked inhibitor of apoptosis protein.
    Karikari CA; Roy I; Tryggestad E; Feldmann G; Pinilla C; Welsh K; Reed JC; Armour EP; Wong J; Herman J; Rakheja D; Maitra A
    Mol Cancer Ther; 2007 Mar; 6(3):957-66. PubMed ID: 17339366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Syntheses of R-beta-rutinosides by rutin-degrading reaction.
    Zhou L; Lu C; Wang GL; Geng HL; Yang JW; Chen P
    J Asian Nat Prod Res; 2009; 11(1):18-23. PubMed ID: 19177231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual Substrate Specificity of the Rutinosidase from
    Brodsky K; Kutý M; Pelantová H; Cvačka J; Rebroš M; Kotik M; Kutá Smatanová I; Křen V; Bojarová P
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32784723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Pancreatic Cancer Cells and Stellate Cells Using Designer Nanotherapeutics in vitro.
    Elechalawar CK; Hossen MN; Shankarappa P; Peer CJ; Figg WD; Robertson JD; Bhattacharya R; Mukherjee P
    Int J Nanomedicine; 2020; 15():991-1003. PubMed ID: 32103952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rutinosidase and other diglycosidases: Rising stars in biotechnology.
    Křen V; Bojarová P
    Biotechnol Adv; 2023 Nov; 68():108217. PubMed ID: 37481095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective targeting of gemcitabine to pancreatic cancer through PEG-cored Flt-1 antibody-conjugated dendrimers.
    Öztürk K; Esendağlı G; Gürbüz MU; Tülü M; Çalış S
    Int J Pharm; 2017 Jan; 517(1-2):157-167. PubMed ID: 27965135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.