These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Minimizing bone abnormalities in children with renal failure.
    Author: Ziólkowska H.
    Journal: Paediatr Drugs; 2006; 8(4):205-22. PubMed ID: 16898852.
    Abstract:
    Renal osteodystrophy (ROD), a metabolic bone disease accompanying chronic renal failure (CRF), is a major clinical problem in pediatric nephrology. Growing and rapidly remodeling skeletal systems are particularly susceptible to the metabolic and endocrine disturbances in CRF. The pathogenesis of ROD is complex and multifactorial. Hypocalcemia, phosphate retention, and low levels of 1,25 dihydroxyvitamin D(3) related to CRF result in disturbances of bone metabolism and ROD. Delayed diagnosis and treatment of bone lesions might result in severe disability. Based on microscopic findings, renal bone disease is classified into two main categories: high- and low-turnover bone disease. High-turnover bone disease is associated with moderate and severe hyperparathyroidism. Low-turnover bone disease includes osteomalacia and adynamic bone disease. The treatment of ROD involves controlling serum calcium and phosphate levels, and preventing parathyroid gland hyperplasia and extraskeletal calcifications. Serum calcium and phosphorus levels should be kept within the normal range. The calcium-phosphorus product has to be <5 mmol(2)/L(2) (60 mg(2)/dL(2)). Parathyroid hormone (PTH) levels in children with CRF should be within the normal range, but in children with end-stage renal disease PTH levels should be two to three times the upper limit of the normal range. Drug treatment includes intestinal phosphate binding agents and active vitamin D metabolites. Phosphate binders should be administered with each meal. Calcium carbonate is the most widely used intestinal phosphate binder. In children with hypercalcemic episodes, sevelamer, a synthetic phosphate binder, should be introduced. In children with CRF, ergocalciferol (vitamin D(2)), colecalciferol (vitamin D(3)), and calcifediol (25-hydroxyvitamin D(3)) should be used as vitamin D analogs. In children undergoing dialysis, active vitamin D metabolites alfacalcidol (1alpha-hydroxy-vitamin D(3)) and calcitriol (1,25 dihydroxyvitamin D(3)) are applied. In recent years, a number of new drugs have emerged that hold promise for a more effective treatment of bone lesions in CRF. This review describes the current approach to the diagnosis and treament of ROD.
    [Abstract] [Full Text] [Related] [New Search]