These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Addressing the "New" NEC: Part I: rediscovering the basics.
    Author: Simmonds A, LaGamma EF.
    Journal: Indian J Pediatr; 2006 Nov; 73(11):1011-8. PubMed ID: 17127784.
    Abstract:
    Epithelial cell functions ultimately define the ability of the extremely low birth weight human fetus to survive outside of the uterus. These specialized epithelial cell capacities manage all human interactions with the ex utero world including: (i) lung mechanics, surface chemistry and gas exchange, (ii) renal tubular balance of fluid and electrolytes, (iii) barrier functions of the intestine and skin for keeping bacteria out and water in, plus enabling intestinal digestion, as well as (iv) maintaining an intact neuroepithelium lining of the ventricles of the brain and retina. In Part I of this two part review, the authors describe why the gut barrier is a clinically relevant model system for studying the complex interplay between innate and adaptive immunity, dendritic &epithelial cell interactions, intraepithelial lymphocytes, M-cells, as well as the gut associated lymphoid tissues where colonization after birth, clinician feeding practices, use of antibiotics as well as exposure to prebiotics, probiotics and maternal vaginal flora all program the neonate for a life-time of immune competence distinguishing "self" from foreign antigens. These barrier defense capacities become destructive during disease processes like necrotizing enterocolitis (NEC) when an otherwise maturationally normal, yet dysregulated and immature, immune defense system is associated with high levels of certain inflammatory mediators like TNFa. In Part II, the authors will discuss the theoretical advantages of using rhG-CSF in managing NEC or sepsis by augmenting neonatal neutrophil number and killing capacity including an unexpected, paradoxical and potent anti-TNFa function that may serve to limit extension of tissue destruction without impairing bacterial killing capacity. The authors conclude by arguing that NEC may be the ideal disease process for testing whether a clearly defined clinical benefit of cytokine therapy can prove beneficial.
    [Abstract] [Full Text] [Related] [New Search]