These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 10000000)

  • 1. Optical properties of excitons under an axial-potential perturbation.
    Zhao QX; Westgaard T
    Phys Rev B Condens Matter; 1991 Aug; 44(8):3726-3735. PubMed ID: 10000000
    [No Abstract]   [Full Text] [Related]  

  • 2. Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide.
    Carozo V; Wang Y; Fujisawa K; Carvalho BR; McCreary A; Feng S; Lin Z; Zhou C; Perea-López N; Elías AL; Kabius B; Crespi VH; Terrones M
    Sci Adv; 2017 Apr; 3(4):e1602813. PubMed ID: 28508048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton states and optical properties of carbon nanotubes.
    Ajiki H
    J Phys Condens Matter; 2012 Dec; 24(48):483001. PubMed ID: 23139202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons.
    Zhou Y; Scuri G; Wild DS; High AA; Dibos A; Jauregui LA; Shu C; De Greve K; Pistunova K; Joe AY; Taniguchi T; Watanabe K; Kim P; Lukin MD; Park H
    Nat Nanotechnol; 2017 Sep; 12(9):856-860. PubMed ID: 28650440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical properties of semiconducting zigzag carbon nanotubes with and without defects.
    Mu J; Ma Y; Liu H; Zhang T; Zhuo S
    J Chem Phys; 2019 Jan; 150(2):024701. PubMed ID: 30646692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical traps for dark excitons.
    Combescot M; Moore MG; Piermarocchi C
    Phys Rev Lett; 2011 May; 106(20):206404. PubMed ID: 21668248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced many-body effects in 2- and 1-dimensional ZnO structures: a Green's function perturbation theory study.
    Wei W; Dai Y; Huang B; Jacob T
    J Chem Phys; 2013 Oct; 139(14):144703. PubMed ID: 24116637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable excitons in bilayer graphene.
    Ju L; Wang L; Cao T; Taniguchi T; Watanabe K; Louie SG; Rana F; Park J; Hone J; Wang F; McEuen PL
    Science; 2017 Nov; 358(6365):907-910. PubMed ID: 29146807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interlayer excitons in a bulk van der Waals semiconductor.
    Arora A; Drüppel M; Schmidt R; Deilmann T; Schneider R; Molas MR; Marauhn P; Michaelis de Vasconcellos S; Potemski M; Rohlfing M; Bratschitsch R
    Nat Commun; 2017 Sep; 8(1):639. PubMed ID: 28935879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical two-dimensional fourier transform spectroscopy of semiconductor quantum wells.
    Cundiff ST; Zhang T; Bristow AD; Karaiskaj D; Dai X
    Acc Chem Res; 2009 Sep; 42(9):1423-32. PubMed ID: 19555068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trapping excitons in a two-dimensional in-plane harmonic potential: experimental evidence for equilibration of indirect excitons.
    Vörös Z; Snoke DW; Pfeiffer L; West K
    Phys Rev Lett; 2006 Jul; 97(1):016803. PubMed ID: 16907396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical theory of excitons in conducting polymers.
    Brazovskii S; Kirova N
    Chem Soc Rev; 2010 Jul; 39(7):2453-65. PubMed ID: 20517580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redshift of excitons in carbon nanotubes caused by the environment polarizability.
    Rohlfing M
    Phys Rev Lett; 2012 Feb; 108(8):087402. PubMed ID: 22463569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect.
    Park KD; Jiang T; Clark G; Xu X; Raschke MB
    Nat Nanotechnol; 2018 Jan; 13(1):59-64. PubMed ID: 29158602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of Charged Excitons and Biexcitons in CsPbBr
    Yarita N; Tahara H; Ihara T; Kawawaki T; Sato R; Saruyama M; Teranishi T; Kanemitsu Y
    J Phys Chem Lett; 2017 Apr; 8(7):1413-1418. PubMed ID: 28286951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure-Dependent Light Emission of Charged and Neutral Excitons in Monolayer MoSe
    Fu X; Li F; Lin JF; Gong Y; Huang X; Huang Y; Han B; Zhou Q; Cui T
    J Phys Chem Lett; 2017 Aug; 8(15):3556-3563. PubMed ID: 28715221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magneto-optical effects of excitons in BiI3 crystals under pulsed high magnetic fields: Indirect and direct excitons.
    Takeyama S; Watanabe K; Miura N; Komatsu T; Koike K; Kaifu Y
    Phys Rev B Condens Matter; 1990 Mar; 41(7):4513-4523. PubMed ID: 9994279
    [No Abstract]   [Full Text] [Related]  

  • 19. Optical properties of excitons in metal-insulator-semiconductor nanowires.
    Yan JY
    Opt Express; 2013 Oct; 21(21):25607-18. PubMed ID: 24150400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magneto-optical effects of excitons in BiI3 crystals under pulsed high magnetic fields. II. Excitons localized at two-dimensional defects.
    Komatsu T; Koike K; Kaifu Y; Takeyama S; Watanabe K; Miura N
    Phys Rev B Condens Matter; 1993 Aug; 48(8):5095-5104. PubMed ID: 10009023
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.