These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10000011)

  • 1. Charge-transfer excitations on a linear chain.
    Heldmann K; Teich WG; Mahler G
    Phys Rev B Condens Matter; 1991 Aug; 44(8):3829-3834. PubMed ID: 10000011
    [No Abstract]   [Full Text] [Related]  

  • 2. Calculating Off-Site Excitations in Symmetric Donor-Acceptor Systems via Time-Dependent Density Functional Theory with Range-Separated Density Functionals.
    Phillips H; Geva E; Dunietz BD
    J Chem Theory Comput; 2012 Aug; 8(8):2661-8. PubMed ID: 26592111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-Transfer Versus Charge-Transfer-Like Excitations Revisited.
    Moore B; Sun H; Govind N; Kowalski K; Autschbach J
    J Chem Theory Comput; 2015 Jul; 11(7):3305-20. PubMed ID: 26575765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge Transfer Excitations with Range Separated Functionals Using Improved Virtual Orbitals.
    Würdemann R; Walter M
    J Chem Theory Comput; 2018 Jul; 14(7):3667-3676. PubMed ID: 29894183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme.
    Theophilou I; Tassi M; Thanos S
    J Chem Phys; 2014 Apr; 140(16):164102. PubMed ID: 24784248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication: Becke's virial exciton model gives accurate charge-transfer excitation energies.
    Feng X; Becke AD; Johnson ER
    J Chem Phys; 2018 Dec; 149(23):231101. PubMed ID: 30579291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation.
    Yang Y; van Aggelen H; Yang W
    J Chem Phys; 2013 Dec; 139(22):224105. PubMed ID: 24329054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-range to long-range charge-transfer excitations in the zincbacteriochlorin-bacteriochlorin complex: a Bethe-Salpeter study.
    Duchemin I; Deutsch T; Blase X
    Phys Rev Lett; 2012 Oct; 109(16):167801. PubMed ID: 23215131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of charge transfer excitations in hexacyanomanganate(III) with Mn K-edge resonant inelastic x-ray scattering.
    Meyer DA; Zhang X; Bergmann U; Gaffney KJ
    J Chem Phys; 2010 Apr; 132(13):134502. PubMed ID: 20387936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge transfer excitations in TDDFT: A ghost-hunter index.
    Campetella M; Maschietto F; Frisch MJ; Scalmani G; Ciofini I; Adamo C
    J Comput Chem; 2017 Sep; 38(25):2151-2156. PubMed ID: 28763141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of Correctly Describing Charge-Transfer Excitations for Understanding the Chemical Effect in SERS.
    Moore JE; Morton SM; Jensen L
    J Phys Chem Lett; 2012 Sep; 3(17):2470-5. PubMed ID: 26292135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge-Transfer-Like π→π* Excitations in Time-Dependent Density Functional Theory: A Conundrum and Its Solution.
    Kuritz N; Stein T; Baer R; Kronik L
    J Chem Theory Comput; 2011 Aug; 7(8):2408-15. PubMed ID: 26606616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge transfer, double and bond-breaking excitations with time-dependent density matrix functional theory.
    Giesbertz KJ; Baerends EJ; Gritsenko OV
    Phys Rev Lett; 2008 Jul; 101(3):033004. PubMed ID: 18764252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliable prediction of charge transfer excitations in molecular complexes using time-dependent density functional theory.
    Stein T; Kronik L; Baer R
    J Am Chem Soc; 2009 Mar; 131(8):2818-20. PubMed ID: 19239266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-energy spin and charge excitations in electron-doped copper oxide superconductors.
    Ishii K; Fujita M; Sasaki T; Minola M; Dellea G; Mazzoli C; Kummer K; Ghiringhelli G; Braicovich L; Tohyama T; Tsutsumi K; Sato K; Kajimoto R; Ikeuchi K; Yamada K; Yoshida M; Kurooka M; Mizuki J
    Nat Commun; 2014 Apr; 5():3714. PubMed ID: 24762677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonant inelastic x-ray scattering at the oxygen K resonance of NiO: nonlocal charge transfer and double-singlet excitations.
    Duda LC; Schmitt T; Magnuson M; Forsberg J; Olsson A; Nordgren J; Okada K; Kotani A
    Phys Rev Lett; 2006 Feb; 96(6):067402. PubMed ID: 16606046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron-lattice interactions strongly renormalize the charge-transfer energy in the spin-chain cuprate Li2CuO2.
    Johnston S; Monney C; Bisogni V; Zhou KJ; Kraus R; Behr G; Strocov VN; Málek J; Drechsler SL; Geck J; Schmitt T; van den Brink J
    Nat Commun; 2016 Feb; 7():10563. PubMed ID: 26884151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy Gap of Neutral Excitations Implies Vanishing Charge Susceptibility.
    Watanabe H
    Phys Rev Lett; 2017 Mar; 118(11):117205. PubMed ID: 28368619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical excitations of defects in realistic nanoscale silica clusters: comparing the performance of density functional theory using hybrid functionals with correlated wavefunction methods.
    Zwijnenburg MA; Sousa C; Sokol AA; Bromley ST
    J Chem Phys; 2008 Jul; 129(1):014706. PubMed ID: 18624495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of asymptotically corrected model potentials for charge-transfer-like excitations in oligoacenes.
    Peng WT; Chai JD
    Phys Chem Chem Phys; 2014 Oct; 16(39):21564-9. PubMed ID: 25188860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.