These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 10001083)

  • 1. Identity of the conduction-band minimum in (AlAs)1/(GaAs)1 (001) superlattices: Intermixing-induced reversal of states.
    Laks DB; Zunger A
    Phys Rev B Condens Matter; 1992 May; 45(19):11411-11414. PubMed ID: 10001083
    [No Abstract]   [Full Text] [Related]  

  • 2. A High-Throughput Study of the Electronic Structure and Physical Properties of Short-Period (GaAs)
    Liu QL; Zhao ZY; Yi JH; Zhang ZY
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30201917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conduction-band minimum of (GaAs)1/(AlAs)1 superlattices: Relationship to X minimum of AlAs.
    Ge W; Schmidt WD; Sturge MD; Pfeiffer LN; West KW
    Phys Rev B Condens Matter; 1991 Aug; 44(7):3432-3435. PubMed ID: 9999961
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of stacking periodicity on the electronic and optical properties of GaAs/AlAs superlattice: a first-principles study.
    Jiang M; Xiao HY; Peng SM; Qiao L; Yang GX; Liu ZJ; Zu XT
    Sci Rep; 2020 Mar; 10(1):4862. PubMed ID: 32184414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattice dynamics and Raman scattering by phonons of GaAs/AlAs(001) superlattices.
    Berdekas D; Ves S
    J Phys Condens Matter; 2009 Jul; 21(27):275405. PubMed ID: 21828489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic states in GaAs-AlAs lateral-surface superlattices produced by deposition of AlAs and GaAs fractional layers on (001) vicinal GaAs substrates.
    Sun H
    Phys Rev B Condens Matter; 1992 Nov; 46(19):12371-12376. PubMed ID: 10003151
    [No Abstract]   [Full Text] [Related]  

  • 7. Layer ordering and faulting in (GaAs)n/(AlAs)n ultrashort-period superlattices.
    Li JH; Moss SC; Zhang Y; Mascarenhas A; Pfeiffer LN; West KW; Ge WK; Bai J
    Phys Rev Lett; 2003 Sep; 91(10):106103. PubMed ID: 14525495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symmetry of conduction states for GaAs-AlAs type-II superlattices under uniaxial stress.
    Lefebvre P; Gil B; Mathieu H; Planel R
    Phys Rev B Condens Matter; 1989 Mar; 39(8):5550-5553. PubMed ID: 9948960
    [No Abstract]   [Full Text] [Related]  

  • 9. A comparative study of low energy radiation response of AlAs, GaAs and GaAs/AlAs superlattice and the damage effects on their electronic structures.
    Jiang M; Xiao HY; Peng SM; Yang GX; Liu ZJ; Zu XT
    Sci Rep; 2018 Jan; 8(1):2012. PubMed ID: 29386543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band-edge states in short-period (GaAs)m/(AlAs)n superlattices.
    Gopalan S; Christensen NE; Cardona M
    Phys Rev B Condens Matter; 1989 Mar; 39(8):5165-5174. PubMed ID: 9948907
    [No Abstract]   [Full Text] [Related]  

  • 11. Quasiparticle band offset at the (001) interface and band gaps in ultrathin superlattices of GaAs-AlAs heterojunctions.
    Zhang SB; Cohen ML; Louie SG; Tománek D; Hybertsen MS
    Phys Rev B Condens Matter; 1990 May; 41(14):10058-10067. PubMed ID: 9993390
    [No Abstract]   [Full Text] [Related]  

  • 12. Thermal conductivity of GaAs/AlAs distributed Bragg reflectors in semiconductor disk laser: comparison of molecular dynamics simulation and analytic methods.
    Zhang P; Jiang M; Zhue R; Zhang D; Song Y
    Appl Opt; 2017 May; 56(15):4537-4542. PubMed ID: 29047886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasiparticle band gaps for ultrathin GaAs/AlAs(001) superlattices.
    Zhang SB; Hybertsen MS; Cohen ML; Louie SG; Tomanek D
    Phys Rev Lett; 1989 Oct; 63(14):1495-1498. PubMed ID: 10040587
    [No Abstract]   [Full Text] [Related]  

  • 14. Negative-differential band-gap renormalization in type-II GaAs/AlAs superlattices.
    Langbein W; Hallstein S; Kalt H; Nötzel R; Ploog K
    Phys Rev B Condens Matter; 1995 Jan; 51(3):1946-1949. PubMed ID: 9978923
    [No Abstract]   [Full Text] [Related]  

  • 15. Crystal phase induced bandgap modifications in AlAs nanowires probed by resonant Raman spectroscopy.
    Funk S; Li A; Ercolani D; Gemmi M; Sorba L; Zardo I
    ACS Nano; 2013 Feb; 7(2):1400-7. PubMed ID: 23281738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Si diffusion in GaAs and Si-induced interdiffusion in GaAs/AlAs superlattices.
    Chen B; Zhang Q; Bernholc J
    Phys Rev B Condens Matter; 1994 Jan; 49(4):2985-2988. PubMed ID: 10011148
    [No Abstract]   [Full Text] [Related]  

  • 17. Pressure-induced Hall-effect spectroscopy of silicon DX states in planar doped GaAs-AlAs superlattices.
    Sellitto P; Sicart J; Robert JL; Planel R
    Phys Rev B Condens Matter; 1995 Jun; 51(23):16778-16784. PubMed ID: 9978685
    [No Abstract]   [Full Text] [Related]  

  • 18. Franz-Keldysh oscillations and Wannier-Stark localization in GaAs/AlAs superlattices with single-monolayer AlAs barriers.
    Schneider H; Fischer A; Ploog K
    Phys Rev B Condens Matter; 1992 Mar; 45(11):6329-6332. PubMed ID: 10000392
    [No Abstract]   [Full Text] [Related]  

  • 19. Ordering of lowest conduction-band states in (GaAs)n/(AlAs)m.
    Ikonic Z; Srivastava GP; Inkson JC
    Phys Rev B Condens Matter; 1992 Dec; 46(23):15150-15155. PubMed ID: 10003629
    [No Abstract]   [Full Text] [Related]  

  • 20. Exciton localization in corrugated GaAs/AlAs superlattices grown on (311) GaAs substrates.
    Xu ZY; Yuan ZL; Xu JZ; Zheng BZ; Wang BS; Jiang DS; Nötzel R; Ploog K
    Phys Rev B Condens Matter; 1995 Mar; 51(11):7024-7028. PubMed ID: 9977260
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.