These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10003301)

  • 1. Effects of field cooling on low-field microwave absorption in copper oxide superconductors.
    Mzoughi T; Farach HA; Quagliata E; Mesa MA; Poole CP; Creswick R
    Phys Rev B Condens Matter; 1992 Jul; 46(2):1130-1133. PubMed ID: 10003301
    [No Abstract]   [Full Text] [Related]  

  • 2. Magnetic field modulated microwave spectroscopy across phase transitions and the search for new superconductors.
    Ramírez JG; Basaran AC; de la Venta J; Pereiro J; Schuller IK
    Rep Prog Phys; 2014 Sep; 77(9):093902. PubMed ID: 25222051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model for low-field microwave absorption in granular type-II superconductors.
    Pertile A; Lopez OA; Farach HA; Creswick RJ; Poole CP
    Phys Rev B Condens Matter; 1995 Dec; 52(21):15475-15478. PubMed ID: 9980904
    [No Abstract]   [Full Text] [Related]  

  • 4. Validation of measured microwave absorption and temperature change for development of a single-mode-type microwave heating thermogravimetry apparatus.
    Karisma AD; Hamaba T; Fukasawa T; Huang AN; Segawa T; Fukui K
    Rev Sci Instrum; 2017 Feb; 88(2):024101. PubMed ID: 28249523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative lattice expansion from the superconductivity--antiferromagnetism crossover in ruthenium copper oxides.
    McLaughlin AC; Sher F; Attfield JP
    Nature; 2005 Aug; 436(7052):829-32. PubMed ID: 16094364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field-dependent microwave absorption in high-Tc superconductors.
    Glarum SH; Marshall JH; Schneemeyer LF
    Phys Rev B Condens Matter; 1988 May; 37(13):7491-7495. PubMed ID: 9944039
    [No Abstract]   [Full Text] [Related]  

  • 7. Microwave enhanced stabilization of heavy metal sludge.
    Hsieh CH; Lo SL; Chiueh PT; Kuan WH; Chen CL
    J Hazard Mater; 2007 Jan; 139(1):160-6. PubMed ID: 16863678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longitudinal cooling of non-neutral plasma by energy exchange.
    Lee J; Cary JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036406. PubMed ID: 15903587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherent Excited States in Superconductors due to a Microwave Field.
    Semenov AV; Devyatov IA; de Visser PJ; Klapwijk TM
    Phys Rev Lett; 2016 Jul; 117(4):047002. PubMed ID: 27494495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of copper-contaminated sludge using the microwave sintering.
    Chen CL; Lo SL; Kuan WH; Hsieh CH
    J Hazard Mater; 2009 Sep; 168(2-3):857-61. PubMed ID: 19321262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Logarithmic Upturn in Low-Temperature Electronic Transport as a Signature of d-Wave Order in Cuprate Superconductors.
    Zhou X; Peets DC; Morgan B; Huttema WA; Murphy NC; Thewalt E; Truncik CJS; Turner PJ; Koenig AJ; Waldram JR; Hosseini A; Liang R; Bonn DA; Hardy WN; Broun DM
    Phys Rev Lett; 2018 Dec; 121(26):267004. PubMed ID: 30636125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving polarized neutron imaging for visualization of the Meissner effect in superconductors.
    Wang T; Jiang CY; Bilheux HZ; Dhiman I; Bilheux JC; Crow L; McDonald L; Robertson L; Kardjilov N; Pynn R; Tong X
    Rev Sci Instrum; 2019 Mar; 90(3):033705. PubMed ID: 30927791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and microwave absorption properties of yolk-shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells.
    Liu J; Cheng J; Che R; Xu J; Liu M; Liu Z
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2503-9. PubMed ID: 23474005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intra- versus interlayer pairing in copper oxide superconductors: Response to a magnetic field.
    Liu SH; Klemm RA
    Phys Rev B Condens Matter; 1993 Aug; 48(6):4080-4094. PubMed ID: 10008860
    [No Abstract]   [Full Text] [Related]  

  • 15. Transmission EELS of oxide superconductors with a cold field emission TEM.
    Wang YY; Zhang H; Dravid VP
    Microsc Res Tech; 1995 Feb; 30(3):208-17. PubMed ID: 7718915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic flux-line lattices and vortices in the copper oxide superconductors.
    Bishop DJ; Gammel PL; Huse DA; Murray CA
    Science; 1992 Jan; 255(5041):165-72. PubMed ID: 17756066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-assisted asymmetric organocatalysis. A probe for nonthermal microwave effects and the concept of simultaneous cooling.
    Hosseini M; Stiasni N; Barbieri V; Kappe CO
    J Org Chem; 2007 Feb; 72(4):1417-24. PubMed ID: 17288387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superconducting properties of copper oxide high-temperature superconductors.
    Chen G; Langlois JM; Guo Y; Goddard WA
    Proc Natl Acad Sci U S A; 1989 May; 86(10):3447-51. PubMed ID: 16594038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron-phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors.
    Reznik D; Pintschovius L; Ito M; Iikubo S; Sato M; Goka H; Fujita M; Yamada K; Gu GD; Tranquada JM
    Nature; 2006 Apr; 440(7088):1170-3. PubMed ID: 16641991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystalline-Amorphous Permalloy@Iron Oxide Core-Shell Nanoparticles Decorated on Graphene as High-Efficiency, Lightweight, and Hydrophobic Microwave Absorbents.
    Sun Y; Zhang J; Zong Y; Deng X; Zhao H; Feng J; He M; Li X; Peng Y; Zheng X
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6374-6383. PubMed ID: 30673262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.