These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 10003361)

  • 1. Bulk electronic structure of AlB2-type erbium disilicide with and without Si vacancies.
    Stauffer L; Pirri C; Wetzel P; Mharchi A; Paki P; Bolmont D; Gewinner G; Minot C
    Phys Rev B Condens Matter; 1992 Nov; 46(20):13201-13206. PubMed ID: 10003361
    [No Abstract]   [Full Text] [Related]  

  • 2. The Ce2Li0.39Ni1.61Si2 structure as a new derivative of the AlB2 family.
    Stetskiv A; Rozdzynska-Kielbik B; Pavlyuk V
    Acta Crystallogr C Struct Chem; 2014 Jun; 70(Pt 6):622-6. PubMed ID: 24898970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic structure of erbium disilicide.
    Allan G; Lefebvre I; Christensen NE
    Phys Rev B Condens Matter; 1993 Sep; 48(12):8572-8577. PubMed ID: 10007070
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of defects in the formation of AlB2-type WB2 and MoB2.
    Hayami W; Momozawa A; Otani S
    Inorg Chem; 2013 Jul; 52(13):7573-7. PubMed ID: 24004287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic states of intrinsic surface and bulk vacancies in FeS2.
    Krishnamoorthy A; Herbert FW; Yip S; Van Vliet KJ; Yildiz B
    J Phys Condens Matter; 2013 Jan; 25(4):045004. PubMed ID: 23220862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of boron vacancies on phase stability, bonding and structure of MB₂ (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) with AlB₂ type structure.
    Dahlqvist M; Jansson U; Rosen J
    J Phys Condens Matter; 2015 Nov; 27(43):435702. PubMed ID: 26445165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmission electron microscopy characterization of the erbium silicide formation process using a Pt/Er stack on a silicon-on-insulator substrate.
    Łaszcz A; Katcki J; Ratajczak J; Tang X; Dubois E
    J Microsc; 2006 Oct; 224(Pt 1):38-41. PubMed ID: 17100902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and chemical properties of gold rare earth disilicide core-shell nanowires.
    Ouyang W; Shinde A; Zhang Y; Cao J; Ragan R; Wu R
    ACS Nano; 2011 Jan; 5(1):477-85. PubMed ID: 21142188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metallic rare-earth silicide nanowires on silicon surfaces.
    Dähne M; Wanke M
    J Phys Condens Matter; 2013 Jan; 25(1):014012. PubMed ID: 23221358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of Vacancies in Si- and Ge-based Clathrates: Role of Electron Localization and Symmetry Breaking.
    Bhattacharya A; Carbogno C; Böhme B; Baitinger M; Grin Y; Scheffler M
    Phys Rev Lett; 2017 Jun; 118(23):236401. PubMed ID: 28644655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of erbium incorporation on the structure and photophysics of silicon-germanium nanowires.
    Wu J; Wieligor M; Zerda TW; Coffer JL
    Nanoscale; 2010 Dec; 2(12):2657-67. PubMed ID: 20931125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological work function dependence of rare-earth disilicide metal nanostructures.
    Lee S; Shinde A; Ragan R
    Nanotechnology; 2009 Jan; 20(3):035701. PubMed ID: 19417303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of genes encoding IGFBPs, SNARK, CD36, and PECAM1 in the liver of mice treated with chromium disilicide and titanium nitride nanoparticles.
    Minchenko DO; Tsymbal DO; Yavorovsky OP; Solokha NV; Minchenko OH
    Endocr Regul; 2017 Apr; 51(2):84-95. PubMed ID: 28609285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonon anomalies predict superconducting T(c) for AlB2-type structures.
    Alarco JA; Talbot PC; Mackinnon ID
    Phys Chem Chem Phys; 2015 Oct; 17(38):25090-9. PubMed ID: 26348839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal and electronic structures of La2LiGe6-x (x = 0.21) and La2LiGe4Si2.
    Stetskiv A; Misztal R; Pavlyuk V
    Acta Crystallogr C; 2012 Aug; 68(Pt 8):i60-i64. PubMed ID: 22850841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conduction electron spin resonance in AlB2.
    Holanda LM; Mendonça-Ferreira L; Ribeiro RA; Osorio-Guillén JM; Dalpian GM; Kuga K; Nakatsuji S; Fisk Z; Urbano RR; Pagliuso PG; Rettori C
    J Phys Condens Matter; 2013 May; 25(21):216001. PubMed ID: 23628913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutral and Charged Oxygen Vacancies Induce Two-Dimensional Electron Gas Near SiO2/BaTiO3 Interfaces.
    Kimmel AV; Íñiguez J; Cain MG; Sushko PV
    J Phys Chem Lett; 2013 Jan; 4(2):333-7. PubMed ID: 26283444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chain Vacancies in 2D Crystals.
    Zhao J; Nam H; Ly TH; Yun SJ; Kim S; Cho S; Yang H; Lee YH
    Small; 2017 Jan; 13(1):. PubMed ID: 27748996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic approach for formation of erbium oxide nanoparticles with variable geometries.
    Radziuk D; Skirtach A; Gessner A; Kumke MU; Zhang W; Möhwald H; Shchukin D
    Langmuir; 2011 Dec; 27(23):14472-80. PubMed ID: 22022886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erbium ion implantation into diamond - measurement and modelling of the crystal structure.
    Cajzl J; Nekvindová P; Macková A; Malinský P; Sedmidubský D; Hušák M; Remeš Z; Varga M; Kromka A; Böttger R; Oswald J
    Phys Chem Chem Phys; 2017 Feb; 19(8):6233-6245. PubMed ID: 28195287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.