These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 10005653)

  • 21. Passively Q-switched and mode-locked Nd:GGG laser with a Bi-doped GaAs saturable absorber.
    Cong W; Li D; Zhao S; Yang K; Li X; Qiao H; Liu J
    Opt Express; 2014 Jun; 22(12):14812-8. PubMed ID: 24977576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In-plane transport properties of heavily delta -doped GaAs n-i-p-i superlattices: Metal-insulator transition, weak and strong localization.
    Schmidt T; Müller SG; Gulden KH; Metzner C; Döhler GH
    Phys Rev B Condens Matter; 1996 Nov; 54(19):13980-13995. PubMed ID: 9985317
    [No Abstract]   [Full Text] [Related]  

  • 23. Temperature dependence of high-resolution electron-energy-loss spectroscopy of the hole plasmon at heavily doped p-type GaAs(110) surfaces.
    Meng Y; Lapeyre GJ
    Phys Rev B Condens Matter; 1992 Jan; 45(3):1500-1503. PubMed ID: 10001642
    [No Abstract]   [Full Text] [Related]  

  • 24. Optical properties of heavily doped GaAs nanowires and electroluminescent nanowire structures.
    Lysov A; Offer M; Gutsche C; Regolin I; Topaloglu S; Geller M; Prost W; Tegude FJ
    Nanotechnology; 2011 Feb; 22(8):085702. PubMed ID: 21242617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Absorption near band edges in heavily doped GaAs.
    Sritrakool W; Sa-yakanit V; Glyde HR
    Phys Rev B Condens Matter; 1985 Jul; 32(2):1090-1100. PubMed ID: 9937121
    [No Abstract]   [Full Text] [Related]  

  • 26. Optical absorption by free holes in heavily doped GaAs.
    Huberman ML; Ksendzov A; Larsson A; Terhune R; Maserjian J
    Phys Rev B Condens Matter; 1991 Jul; 44(3):1128-1133. PubMed ID: 9999621
    [No Abstract]   [Full Text] [Related]  

  • 27. High pressure and DX centers in heavily doped bulk GaAs.
    Suski T; Piotrzkowski R; Wisniewski P; Litwin-Staszewska E; Dmowski L
    Phys Rev B Condens Matter; 1989 Aug; 40(6):4012-4021. PubMed ID: 9992375
    [No Abstract]   [Full Text] [Related]  

  • 28. Silicon donor states in heavily doped thin GaAs-AlAs(001) superlattices.
    Nelson JS; Fong CY; Batra IP; Pickett WE; Klein BM
    Phys Rev B Condens Matter; 1988 Jun; 37(17):10203-10211. PubMed ID: 9944451
    [No Abstract]   [Full Text] [Related]  

  • 29. Effect of pressure on defect-related emission in heavily silicon-doped GaAs.
    Holtz M; Sauncy T; Dallas T; Massie S
    Phys Rev B Condens Matter; 1994 Nov; 50(19):14706-14709. PubMed ID: 9975715
    [No Abstract]   [Full Text] [Related]  

  • 30. Lifetime studies of self-activated photoluminescence in heavily silicon-doped GaAs.
    Sauncy T; Palsule CP; Holtz M; Gangopadhyay S; Massie S
    Phys Rev B Condens Matter; 1996 Jan; 53(4):1900-1906. PubMed ID: 9983650
    [No Abstract]   [Full Text] [Related]  

  • 31. Fermi-edge singularity in heavily doped GaAs multiple quantum wells.
    Kalt H; Leo K; Cingolani R; Ploog K
    Phys Rev B Condens Matter; 1989 Dec; 40(17):12017-12019. PubMed ID: 9991827
    [No Abstract]   [Full Text] [Related]  

  • 32. Band-to-band photoluminescence and luminescence excitation in extremely heavily carbon-doped epitaxial GaAs.
    Wang L; Haegel NM; Lowney JR
    Phys Rev B Condens Matter; 1994 Apr; 49(16):10976-10985. PubMed ID: 10009940
    [No Abstract]   [Full Text] [Related]  

  • 33. Surface-defect formation on heavily doped InAs and GaAs layers studied by scanning tunneling microscopy.
    Yamaguchi H; Horikoshi Y
    Phys Rev B Condens Matter; 1996 Feb; 53(8):4565-4569. PubMed ID: 9984014
    [No Abstract]   [Full Text] [Related]  

  • 34. Metal submonolayers on Hg-Zn-Te alloys: Electrochemical and electrolyte electroreflectance studies.
    Nguyen Van Huong C ; Lemasson P
    Phys Rev B Condens Matter; 1989 Aug; 40(5):3021-3027. PubMed ID: 9992236
    [No Abstract]   [Full Text] [Related]  

  • 35. Observation of transitions between electronic states at the (111) A-face of CdTe by electrolyte electroreflectance.
    Raccah PM; Garland JW; Zhang Z; Abels LL; Ugur S; Mioc S; Brown M
    Phys Rev Lett; 1985 Sep; 55(12):1323-1326. PubMed ID: 10031787
    [No Abstract]   [Full Text] [Related]  

  • 36. Raman spectroscopy of localized vibrational modes from carbon and carbon-hydrogen pairs in heavily carbon-doped GaAs epitaxial layers.
    Wagner J; Maier M; Lauterbach T; Bachem KH; Fischer A; Ploog K; Mörsch G; Kamp M
    Phys Rev B Condens Matter; 1992 Apr; 45(16):9120-9125. PubMed ID: 10000774
    [No Abstract]   [Full Text] [Related]  

  • 37. Local structure of isolated positively charged muonium as an analog for the hydrogen ion in p-type GaAs.
    Schultz BE; Chow KH; Hitti B; Kiefl RF; Lichti RL; Cox SF
    Phys Rev Lett; 2005 Aug; 95(8):086404. PubMed ID: 16196878
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electronic properties of the donor states under two-dimensional-conductor and quantum-wire configurations in heavily and orderly doped (GaAs)-(AlAs).
    Fong CY; Yang LH; Nelson JS; Esaki L
    Phys Rev B Condens Matter; 1990 May; 41(15):10667-10673. PubMed ID: 9993475
    [No Abstract]   [Full Text] [Related]  

  • 39. Towards low-dimensional hole systems in Be-doped GaAs nanowires.
    Ullah AR; Gluschke JG; Krogstrup P; Sørensen CB; Nygård J; Micolich AP
    Nanotechnology; 2017 Mar; 28(13):134005. PubMed ID: 28256451
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient n-GaAs photoelectrodes grown by close-spaced vapor transport from a solid source.
    Ritenour AJ; Cramer RC; Levinrad S; Boettcher SW
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):69-73. PubMed ID: 22136204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.