These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 10006)

  • 1. Raman ph profiles for nucleic acid constituents. II. 5'-AMP and 5'-GMP ribonucleotides.
    O'Connor T; Johnson C; Scovell WM
    Biochim Biophys Acta; 1976 Nov; 447(4):495-508. PubMed ID: 10006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman pH profiles for nucleic acid constituents I. Cytidine and uridine ribonucleosides.
    O'Connor T; Johnson C; Scovell WM
    Biochim Biophys Acta; 1976 Nov; 447(4):484-94. PubMed ID: 10005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraviolet resonance Raman excitation profiles of nucleic acid bases with excitation from 200 to 300 nanometers.
    Kubasek WL; Hudson B; Peticolas WL
    Proc Natl Acad Sci U S A; 1985 Apr; 82(8):2369-73. PubMed ID: 2986114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metal-nucleotide interactions. IX. Raman difference spectroscopic studies on the binding of CH3Hg(II) to 1-methylthymine, thymidine-5'-monophosphate, DNA models and native DNA.
    Chrisman RW; Mansy S; Peresie HJ; Ranade A; Berg TA; Tobias RS
    Bioinorg Chem; 1977; 7(3):245-66. PubMed ID: 18215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association by hydrogen bonding of mononucleotides in aqueous solution.
    Raszka M; Kaplan NO
    Proc Natl Acad Sci U S A; 1972 Aug; 69(8):2025-9. PubMed ID: 4506070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal-nucleotide interactions. III. The participation of amino groups in the binding of methylmercury (II) to cytidine and adenosine 5'-phosphate in aqueous solution: studies by Raman difference spectrophotometry.
    Mansy S; Frick JP; Tobias RS
    Biochim Biophys Acta; 1975 Feb; 378(3):319-32. PubMed ID: 234751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of monovalent cations Li+, Na+, K+, NH4+, Rb+ and Cs+ on the solid and solution structures of the nucleic acid components. Metal ion binding and sugar conformation.
    Tajmir-Riahi HA; Messaoudi S
    J Biomol Struct Dyn; 1992 Oct; 10(2):345-65. PubMed ID: 1334674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton exchange of nucleic acids. Amino protons of mononucleotides.
    McConnell B; Seawell PC
    Biochemistry; 1972 Nov; 11(23):4382-92. PubMed ID: 4342905
    [No Abstract]   [Full Text] [Related]  

  • 9. A laser Raman spectroscopic study of the interaction of the methylmercury cation with AMP, ADP and ATP.
    Tajmir-Riahi HA; Langlais M; Savoie R
    Biochim Biophys Acta; 1988 Oct; 956(3):211-6. PubMed ID: 3167070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Platinum complexes of nucleotides.
    Kong PC; Theophanides T
    Bioinorg Chem; 1975; 5(1):51-8. PubMed ID: 1182208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman studies of nucleic acids. 8. Estimation of RNA secondary structure from Raman scattering by phosphate-group vibrations.
    Thomas GJ; Hartman KA
    Biochim Biophys Acta; 1973 Jun; 312(2):311-32. PubMed ID: 4579230
    [No Abstract]   [Full Text] [Related]  

  • 12. Raman spectroscopic measurement of base stacking in solutions of adenosine, AMP, ATP, and oligoadenylates.
    Weaver JL; Williams RW
    Biochemistry; 1988 Dec; 27(25):8899-903. PubMed ID: 3233211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman spectroscopy of interferon-induced 2',5'-linked oligoadenylates.
    White JC; Williams RW; Johnston MI
    Biochemistry; 1987 Dec; 26(24):7737-44. PubMed ID: 2447947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Surface enhanced Raman scattering (SERS) spectra of AMP and DNA in silver sol].
    Shen HB; Xia JF; Zhang F; Yang HF; Zhang ZR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Dec; 21(6):798-800. PubMed ID: 12958898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mononucleotides in aqueous solution: proton magnetic resonance studies of amino groups.
    Raszka M
    Biochemistry; 1974 Oct; 13(22):4616-22. PubMed ID: 4425651
    [No Abstract]   [Full Text] [Related]  

  • 16. Ultraviolet resonant Raman spectroscopy of nucleic acid components.
    Blazej DC; Peticolas WL
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):2639-43. PubMed ID: 268615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Nucleotide conformation in aqueous solutions by the NMR spectrum lanthanide shift method].
    Babushkina TA; Buikliskiĭ VD; Zolin VF; Koreneva LG; Sheveleva IS
    Biofizika; 1981; 26(2):187-92. PubMed ID: 7260123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the backbone structure of nucleic acids and nucleic acid oligomers by laser Raman scattering.
    Erfurth SC; Kiser EJ; Peticolas WL
    Proc Natl Acad Sci U S A; 1972 Apr; 69(4):938-41. PubMed ID: 4502943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies of Raman spectra of water solutions of adenosine tri-, di-, and monophosphate and some related compounds.
    Rimai L; Cole T; Parsons JL; Hickmott JT; Carew EB
    Biophys J; 1969 Mar; 9(3):320-9. PubMed ID: 5780711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramolecular hydrogen bonding in flavin adenine dinucleotide.
    Raszka M; Kaplan NO
    Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4546-50. PubMed ID: 4373718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.