These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 10006237)

  • 1. Confined transverse-optical phonons in ultrathin CdTe/ZnTe superlattices.
    Fromherz T; Hauzenberger F; Faschinger W; Helm M; Juza P; Sitter H; Bauer G
    Phys Rev B Condens Matter; 1993 Jan; 47(4):1998-2002. PubMed ID: 10006237
    [No Abstract]   [Full Text] [Related]  

  • 2. Confined and propagating phonons in ultrathin CdTe/ZnTe superlattices.
    Oh E; Ramdas AK; Fromherz T; Faschinger W; Bauer G; Sitter H
    Phys Rev B Condens Matter; 1993 Dec; 48(23):17364-17367. PubMed ID: 10008348
    [No Abstract]   [Full Text] [Related]  

  • 3. Ultrathin pseudomorphic layers of ZnTe in CdTe/(Cd,Zn)Te superlattices: A direct optical probe of the mixed-type band configuration.
    Pelekanos NT; Peyla P; Dang LS; Mariette H; Jouneau PH; Tardot A; Magnea N
    Phys Rev B Condens Matter; 1993 Jul; 48(3):1517-1524. PubMed ID: 10008512
    [No Abstract]   [Full Text] [Related]  

  • 4. Infrared reflectivity by transverse-optical phonons in (GaAs)m/(AlAs)n ultrathin-layer superlattices.
    Scamarcio G; Tapfer L; König W; Fischer A; Ploog K; Molinari E; Baroni S; Giannozzi P; de Gironcoli S
    Phys Rev B Condens Matter; 1991 Jun; 43(18):14754-14757. PubMed ID: 9997377
    [No Abstract]   [Full Text] [Related]  

  • 5. Type-II CdSe/CdTe/ZnTe (core-shell-shell) quantum dots with cascade band edges: the separation of electron (at CdSe) and hole (at ZnTe) by the CdTe layer.
    Chen CY; Cheng CT; Lai CW; Hu YH; Chou PT; Chou YH; Chiu HT
    Small; 2005 Dec; 1(12):1215-20. PubMed ID: 17193422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Band offsets and lattice-mismatch effects in strained-layer CdTe/ZnTe superlattices.
    Mathieu H; Allegre J; Chatt A; Lefebvre P; Faurie JP
    Phys Rev B Condens Matter; 1988 Oct; 38(11):7740-7748. PubMed ID: 9945501
    [No Abstract]   [Full Text] [Related]  

  • 7. Quasi-two-dimensional excitons in a strongly localized regime in CdTe-ZnTe superlattices.
    Hefetz Y; Lee D; Nurmikko AV; Sivananthan S; Chu X; Faurie pJ
    Phys Rev B Condens Matter; 1986 Sep; 34(6):4423-4425. PubMed ID: 9940230
    [No Abstract]   [Full Text] [Related]  

  • 8. Electronic properties and valence-band offset of strained ZnTe/CdTe (001) superlattices.
    Continenza A; Massidda S
    Phys Rev B Condens Matter; 1994 Oct; 50(16):11949-11954. PubMed ID: 9975335
    [No Abstract]   [Full Text] [Related]  

  • 9. Interface states in CdTe-ZnTe strained superlattices.
    Quiroga L; Camacho A; Brey L; Tejedor C
    Phys Rev B Condens Matter; 1989 Aug; 40(6):3955-3961. PubMed ID: 9992368
    [No Abstract]   [Full Text] [Related]  

  • 10. Subband structure of strained-layer CdTe/ZnTe superlattices: A reexamination.
    Mathieu H; Chatt A; Allegre J; Faurie JP
    Phys Rev B Condens Matter; 1990 Mar; 41(9):6082-6085. PubMed ID: 9994498
    [No Abstract]   [Full Text] [Related]  

  • 11. Phase transitions in CdTe/ZnTe strained-layer superlattices.
    Dunstan DJ; Prins AD; Gil B; Faurie JP
    Phys Rev B Condens Matter; 1991 Aug; 44(8):4017-4020. PubMed ID: 10000038
    [No Abstract]   [Full Text] [Related]  

  • 12. Orthogonalized-moment method and the study of the electronic structure of heterostructures: Application to CdTe/ZnTe superlattices.
    Jouanin C; Bertho D; Benoit C
    Phys Rev B Condens Matter; 1993 Feb; 47(7):3706-3713. PubMed ID: 10006473
    [No Abstract]   [Full Text] [Related]  

  • 13. Micro-Raman scattering in ultrathin-layer superlattices: Evidence of zone-center anisotropy of optical phonons.
    Scamarcio G; Haines M; Abstreiter G; Molinari E; Baroni S; Fischer A; Ploog K
    Phys Rev B Condens Matter; 1993 Jan; 47(3):1483-1488. PubMed ID: 10006163
    [No Abstract]   [Full Text] [Related]  

  • 14. Monolithic ZnTe-based pillar microcavities containing CdTe quantum dots.
    Kruse C; Pacuski W; Jakubczyk T; Kobak J; Gaj JA; Frank K; Schowalter M; Rosenauer A; Florian M; Jahnke F; Hommel D
    Nanotechnology; 2011 Jul; 22(28):285204. PubMed ID: 21654032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a high efficiency ultrathin CdS/CdTe solar cell using back surface field and backside distributed Bragg reflector.
    Khosroabadi S; Keshmiri SH
    Opt Express; 2014 May; 22 Suppl 3():A921-9. PubMed ID: 24922397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carrier transfer and thermal escape in CdTe/ZnTe quantum dots.
    Man MT; Lee HS
    Opt Express; 2014 Feb; 22(4):4115-22. PubMed ID: 24663734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial chemistry in a ZnTe/CdSe superlattice studied by atom probe tomography and transmission electron microscopy strain measurements.
    Bonef B; Haas B; Rouvière JL; André R; Bougerol C; Grenier A; Jouneau PH; Zuo JM
    J Microsc; 2016 May; 262(2):178-82. PubMed ID: 26748639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on the back contact performances of cdte solar cells by XPS].
    Song HJ; Zheng JG; Feng LH; Zhang JQ; Li W; Li B; Wu LL; Lei Z; Yan Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Dec; 28(12):2737-40. PubMed ID: 19248472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lifetimes of confined acoustic phonons in ultrathin silicon membranes.
    Cuffe J; Ristow O; Chávez E; Shchepetov A; Chapuis PO; Alzina F; Hettich M; Prunnila M; Ahopelto J; Dekorsy T; Sotomayor Torres CM
    Phys Rev Lett; 2013 Mar; 110(9):095503. PubMed ID: 23496722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of bulk-phonon-branch dispersion on displacement patterns and the intermixing of interface and confined optical phonons in superlattices.
    Gerecke H; Bechstedt F
    Phys Rev B Condens Matter; 1991 Mar; 43(9):7053-7065. PubMed ID: 9998169
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.