These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 10008227)

  • 1. First-principles investigation of 67Zn isomer shifts in ZnF2 and the chalcogenides ZnO, ZnS, ZnSe, and ZnTe.
    Mitchell DW; Das TP; Potzel W; Kalvius GM; Karzel H; Schiessl W; Steiner M; Köfferlein M
    Phys Rev B Condens Matter; 1993 Dec; 48(22):16449-16462. PubMed ID: 10008227
    [No Abstract]   [Full Text] [Related]  

  • 2. Theoretical investigation of the 67Zn Mössbauer isomer shifts in the zinc chalcogenides.
    Svane A; Antoncik E
    Phys Rev B Condens Matter; 1986 Jun; 33(11):7462-7473. PubMed ID: 9938109
    [No Abstract]   [Full Text] [Related]  

  • 3. Zn-VI quasiparticle gaps and optical spectra from many-body calculations.
    Riefer A; Weber N; Mund J; Yakovlev DR; Bayer M; Schindlmayr A; Meier C; Schmidt WG
    J Phys Condens Matter; 2017 Jun; 29(21):215702. PubMed ID: 28374685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Facile Method for the Synthesis Fluorescent Zinc Chalcogenide (ZnO, ZnS and ZnSe) Nanoparticles in PS and PMMA Polymer Matrix.
    Hariharan PS; Subhashini N; Vasanthalakshmi J; Anthony SP
    J Fluoresc; 2016 Mar; 26(2):703-7. PubMed ID: 26753757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly sensitive and selective detection of phosphate using novel highly photoluminescent water-soluble Mn-doped ZnTe/ZnSe quantum dots.
    Song Y; Li Y; Liu Y; Su X; Ma Q
    Talanta; 2015 Nov; 144():680-5. PubMed ID: 26452877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic correlation in anion p orbitals impedes ferromagnetism due to cation vacancies in Zn chalcogenides.
    Chan JA; Lany S; Zunger A
    Phys Rev Lett; 2009 Jul; 103(1):016404. PubMed ID: 19659163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Investigation of spectroscopy of ZnCuInS/ZnSe/ZnS quantum dots].
    Lin YJ; Liu WY; Zhang Y; Bi K; Zhang TQ; Feng Y; Wang YD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jan; 34(1):20-2. PubMed ID: 24783525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical studies of g factors for V³+ in ZnS, ZnSe and ZnTe crystals.
    Zhu L; Zhao A; Wang M
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():15-7. PubMed ID: 22609567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ growth, structure characterization, and enhanced photocatalysis of high-quality, single-crystalline ZnTe/ZnO branched nanoheterostructures.
    Sun Y; Zhao Q; Gao J; Ye Y; Wang W; Zhu R; Xu J; Chen L; Yang J; Dai L; Liao ZM; Yu D
    Nanoscale; 2011 Oct; 3(10):4418-26. PubMed ID: 21931901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous band-gap reduction on ZnO submicrorods via covering with ZnS(1-x)Se(x) or ZnSe(1-x)Te(x) alloy in core/sheath morphology.
    Huang YZ; Wu LM; Du SW; Chen L
    Inorg Chem; 2009 May; 48(9):3901-3. PubMed ID: 19326882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZnO-templated synthesis of wurtzite-type ZnS and ZnSe nanoparticles.
    Dawood F; Schaak RE
    J Am Chem Soc; 2009 Jan; 131(2):424-5. PubMed ID: 19113854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy-Metal-Free Fluorescent ZnTe/ZnSe Nanodumbbells.
    Ji B; Panfil YE; Banin U
    ACS Nano; 2017 Jul; 11(7):7312-7320. PubMed ID: 28654241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of d electrons in the zinc-blende semiconductors ZnS, ZnSe, and ZnTe.
    Lee GD; Lee MH; Ihm J
    Phys Rev B Condens Matter; 1995 Jul; 52(3):1459-1462. PubMed ID: 9981194
    [No Abstract]   [Full Text] [Related]  

  • 14. Electronic structure of ZnS, ZnSe, ZnTe, and their pseudobinary alloys.
    Bernard JE; Zunger A
    Phys Rev B Condens Matter; 1987 Aug; 36(6):3199-3228. PubMed ID: 9943231
    [No Abstract]   [Full Text] [Related]  

  • 15. 67Zn Mössbauer investigation of lattice-dynamical effects and hyperfine interactions in ZnF2.
    Steiner M; Potzel W; Schäfer C; Adlassnig W; Peter M; Karzel H; Kalvius GM
    Phys Rev B Condens Matter; 1990 Feb; 41(4):1750-1758. PubMed ID: 9993901
    [No Abstract]   [Full Text] [Related]  

  • 16. Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe.
    Zakharov O; Rubio A; Blase X; Cohen ML; Louie SG
    Phys Rev B Condens Matter; 1994 Oct; 50(15):10780-10787. PubMed ID: 9975177
    [No Abstract]   [Full Text] [Related]  

  • 17. A theoretical perspective of the enhanced photocatalytic properties achieved by forming tetragonal ZnS/ZnSe hetero-bilayer.
    Zhou J; Zhen X
    Phys Chem Chem Phys; 2018 Apr; 20(15):9950-9956. PubMed ID: 29619466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Band alignment and charge transfer predictions of ZnO/ZnX (X = S, Se or Te) interfaces applied to solar cells: a PBE+U theoretical study.
    Flores EM; Gouvea RA; Piotrowski MJ; Moreira ML
    Phys Chem Chem Phys; 2018 Feb; 20(7):4953-4961. PubMed ID: 29387858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic study of refraction properties of a ZnSe-ZnTe dielectric grating.
    Reyes JC
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6589-92. PubMed ID: 19205245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of highly luminescent Mn:ZnSe/ZnS nanocrystals in aqueous media.
    Fang Z; Wu P; Zhong X; Yang YJ
    Nanotechnology; 2010 Jul; 21(30):305604. PubMed ID: 20610870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.