These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Wave function statistics for ballistic quantum transport through chaotic open billiards: statistical crossover and coexistence of regular and chaotic waves. Ishio H; Saichev AI; Sadreev AF; Berggren KF Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056208. PubMed ID: 11736055 [TBL] [Abstract][Full Text] [Related]
5. Conductance fluctuations in chaotic bilayer graphene quantum dots. Bao R; Huang L; Lai YC; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012918. PubMed ID: 26274258 [TBL] [Abstract][Full Text] [Related]
6. Conductance fluctuations and quantum chaotic scattering in semiconductor microstructures. Marcus CM; Westervelt RM; Hopkins PF; Gossard AC Chaos; 1993 Oct; 3(4):643-653. PubMed ID: 12780069 [TBL] [Abstract][Full Text] [Related]
7. Temperature dependence of phase breaking in ballistic quantum dots. Clarke RM; Chan IH; Marcus CM; Duruöz CI; Harris JS; Campman K; Gossard AC Phys Rev B Condens Matter; 1995 Jul; 52(4):2656-2659. PubMed ID: 9981333 [No Abstract] [Full Text] [Related]
8. Phase breaking in ballistic quantum dots: Transition from two- to zero-dimensional behavior. Bird JP; Ishibashi K; Ferry DK; Ochiai Y; Aoyagi Y; Sugano T Phys Rev B Condens Matter; 1995 Jun; 51(24):18037-18040. PubMed ID: 9978850 [No Abstract] [Full Text] [Related]
11. Microscopic theory for the quantum to classical crossover in chaotic transport. Whitney RS; Jacquod P Phys Rev Lett; 2005 Mar; 94(11):116801. PubMed ID: 15903878 [TBL] [Abstract][Full Text] [Related]
12. Impact of small-angle scattering on ballistic transport in quantum dots. See AM; Pilgrim I; Scannell BC; Montgomery RD; Klochan O; Burke AM; Aagesen M; Lindelof PE; Farrer I; Ritchie DA; Taylor RP; Hamilton AR; Micolich AP Phys Rev Lett; 2012 May; 108(19):196807. PubMed ID: 23003076 [TBL] [Abstract][Full Text] [Related]
13. Understanding quantum scattering properties in terms of purely classical dynamics: two-dimensional open chaotic billiards. Méndez-Bermúdez JA; Luna-Acosta GA; Seba P; Pichugin KN Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046207. PubMed ID: 12443299 [TBL] [Abstract][Full Text] [Related]
14. Correlation between peak-height modulation and phase lapses in transport through quantum dots. Jalabert RA; Molina RA; Weick G; Weinmann D Phys Rev E; 2017 Dec; 96(6-1):062208. PubMed ID: 29347399 [TBL] [Abstract][Full Text] [Related]
15. Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera. Xu HY; Wang GL; Huang L; Lai YC Phys Rev Lett; 2018 Mar; 120(12):124101. PubMed ID: 29694077 [TBL] [Abstract][Full Text] [Related]
16. Ehrenfest-time dependence of weak localization in open quantum dots. Rahav S; Brouwer PW Phys Rev Lett; 2005 Jul; 95(5):056806. PubMed ID: 16090905 [TBL] [Abstract][Full Text] [Related]
17. Fractal conductance fluctuations of classical origin. Hennig H; Fleischmann R; Hufnagel L; Geisel T Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):015202. PubMed ID: 17677525 [TBL] [Abstract][Full Text] [Related]
18. Role of orbital dynamics in spin relaxation and weak antilocalization in quantum dots. Zaitsev O; Frustaglia D; Richter K Phys Rev Lett; 2005 Jan; 94(2):026809. PubMed ID: 15698215 [TBL] [Abstract][Full Text] [Related]
19. Quantum dots with disorder and interactions: a solvable large-g limit. Murthy G; Shankar R Phys Rev Lett; 2003 Feb; 90(6):066801. PubMed ID: 12633315 [TBL] [Abstract][Full Text] [Related]
20. Statistics of chaotic resonances in an optical microcavity. Wang L; Lippolis D; Li ZY; Jiang XF; Gong Q; Xiao YF Phys Rev E; 2016 Apr; 93(4):040201. PubMed ID: 27176237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]