These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 10008767)

  • 21. Model for low-field microwave absorption in granular type-II superconductors.
    Pertile A; Lopez OA; Farach HA; Creswick RJ; Poole CP
    Phys Rev B Condens Matter; 1995 Dec; 52(21):15475-15478. PubMed ID: 9980904
    [No Abstract]   [Full Text] [Related]  

  • 22. Numerical models to evaluate the temperature increase induced by ex vivo microwave thermal ablation.
    Cavagnaro M; Pinto R; Lopresto V
    Phys Med Biol; 2015 Apr; 60(8):3287-311. PubMed ID: 25826652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Does microwave irradiation have other than thermal effects on histological staining of the mammalian CNS? A light microscopical study of microwave stimulated staining under isothermal conditions in man and rat.
    Feirabend HK; Ploeger S; Kok P; Choufoer H
    Eur J Morphol; 1992; 30(4):312-27. PubMed ID: 1284833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantification of the 3-D electromagnetic power absorption rate in tissue during transurethral prostatic microwave thermotherapy using heat transfer model.
    Zhu L; Xu LX; Chencinski N
    IEEE Trans Biomed Eng; 1998 Sep; 45(9):1163-72. PubMed ID: 9735566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies on the three-dimensional temperature transients in the canine prostate during transurethral microwave thermal therapy.
    Liu J; Zhu L; Xu LX
    J Biomech Eng; 2000 Aug; 122(4):372-9. PubMed ID: 11036560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Infrared and microwave spectra of an energy gap in high-temperature superconductors.
    Rieck CT; Little WA; Ruvalds J; Virosztek A
    Phys Rev B Condens Matter; 1995 Feb; 51(6):3772-3782. PubMed ID: 9979195
    [No Abstract]   [Full Text] [Related]  

  • 27. Properties of potato starch treated with microwave radiation and enriched with mineral additives.
    Przetaczek-Rożnowska I; Fortuna T; Wodniak M; Łabanowska M; Pająk P; Królikowska K
    Int J Biol Macromol; 2019 Mar; 124():229-234. PubMed ID: 30452986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in the dielectric properties of ex vivo bovine liver during microwave thermal ablation at 2.45 GHz.
    Lopresto V; Pinto R; Lovisolo GA; Cavagnaro M
    Phys Med Biol; 2012 Apr; 57(8):2309-27. PubMed ID: 22460062
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical and thermal-transport properties of an inhomogeneous d-wave superconductor.
    Atkinson WA; Hirschfeld PJ
    Phys Rev Lett; 2002 May; 88(18):187003. PubMed ID: 12005713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Treatment planning in microwave thermal ablation: clinical gaps and recent research advances.
    Lopresto V; Pinto R; Farina L; Cavagnaro M
    Int J Hyperthermia; 2017 Feb; 33(1):83-100. PubMed ID: 27431328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A radio-frequency coil for the microwave characterization of vortex dynamics in thin film superconductors.
    Cuadra-Solís PD; Fernández-Martínez A; Hernàndez JM; García-Santiago A; Vanacken J; Moshchalkov VV
    Rev Sci Instrum; 2015 Jun; 86(6):064701. PubMed ID: 26133852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microwave-Induced Interfacial Nanobubbles.
    Wang L; Miao X; Pan G
    Langmuir; 2016 Nov; 32(43):11147-11154. PubMed ID: 27238206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spin-Crossover Materials towards Microwave Radiation Switches.
    Kucheriv OI; Oliynyk VV; Zagorodnii VV; Launets VL; Gural'skiy IA
    Sci Rep; 2016 Dec; 6():38334. PubMed ID: 27910956
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential response of the permeability of the rat liver canalicular membrane to sucrose and mannitol following in vivo acute single and multiple exposures to microwave radiation (2.45 GHz) and radiant-energy thermal stress.
    Lange DG; D'Antuono ME; Timm RR; Ishii TK; Fujimoto JM
    Radiat Res; 1993 Apr; 134(1):54-62. PubMed ID: 8475254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water sorption, solubility, and tensile bond strength of resilient denture lining materials polymerized by different methods after thermal cycling.
    León BL; Del Bel Cury AA; Rodrigues Garcia RC
    J Prosthet Dent; 2005 Mar; 93(3):282-7. PubMed ID: 15775930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microwave and thermal interactions with oxidative hemolysis.
    Kiel JL; Erwin DN
    Physiol Chem Phys Med NMR; 1984; 16(4):317-23. PubMed ID: 6097927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microwave Properties of Superconductors Close to the Superconductor-Insulator Transition.
    Feigel'man MV; Ioffe LB
    Phys Rev Lett; 2018 Jan; 120(3):037004. PubMed ID: 29400488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Invited Review Article: Microwave spectroscopy based on scanning thermal microscopy: resolution in the nanometer range.
    Meckenstock R
    Rev Sci Instrum; 2008 Apr; 79(4):041101. PubMed ID: 18447516
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical simulation of microwave ablation incorporating tissue contraction based on thermal dose.
    Liu D; Brace CL
    Phys Med Biol; 2017 Mar; 62(6):2070-2086. PubMed ID: 28151729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities.
    Lu MM; Cao MS; Chen YH; Cao WQ; Liu J; Shi HL; Zhang DQ; Wang WZ; Yuan J
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19408-15. PubMed ID: 26284741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.