These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 1001022)

  • 1. Scanning electron microscopy in nematode-induced giant transfer cells.
    Jones MG; Dropkin VH
    Cytobios; 1976; 15(58-59):149-61. PubMed ID: 1001022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure of syncytia induced by the phytoparasitic nematode Nacobbus aberrans in tomato roots, and the possible role of plasmodesmata in their nutrition.
    Jones MG; Payne HL
    J Cell Sci; 1977 Feb; 23():299-313. PubMed ID: 197113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of callose deposition along plasmodesmata in nematode feeding sites.
    Hofmann J; Youssef-Banora M; de Almeida-Engler J; Grundler FM
    Mol Plant Microbe Interact; 2010 May; 23(5):549-57. PubMed ID: 20367463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer cell wall architecture: a contribution towards understanding localized wall deposition.
    Talbot MJ; Offler CE; McCurdy DW
    Protoplasma; 2002 May; 219(3-4):197-209. PubMed ID: 12099220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wall modifications in developing giant cells of Vicia faba and Cucumis sativus induced by root knot nematode, Meloidogyne javanica.
    Huang CS; Maggenti AR
    Phytopathology; 1969 Jul; 59(7):931-7. PubMed ID: 5799564
    [No Abstract]   [Full Text] [Related]  

  • 6. Three-dimensional ultrastructure of feeding tubes and interconnected endoplasmic reticulum in root-knot nematode-induced giant cells in rose balsam.
    Miyashita N; Koga H
    Protoplasma; 2017 Sep; 254(5):1941-1951. PubMed ID: 28204899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early stages of nematode-induced giant-cell formation in roots of Impatiens balsamina.
    Jones MG; Payne HL
    J Nematol; 1978 Jan; 10(1):70-84. PubMed ID: 19305816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose synthesis is required for deposition of reticulate wall ingrowths in transfer cells.
    Talbot MJ; Wasteneys GO; Offler CE; McCurdy DW
    Plant Cell Physiol; 2007 Jan; 48(1):147-58. PubMed ID: 17169922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical composition and ultrastructure of broad bean (Vicia faba L.) nodule endodermis in comparison to the root endodermis.
    Hartmann K; Peiter E; Koch K; Schubert S; Schreiber L
    Planta; 2002 May; 215(1):14-25. PubMed ID: 12012237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electron microscopic study of glycogen and lipid in female Meloidogyne incognita (root-knot nematode).
    Dropkin VH; Acedo J
    J Parasitol; 1974 Dec; 60(6):1013-21. PubMed ID: 4436740
    [No Abstract]   [Full Text] [Related]  

  • 11. Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation.
    Das S; DeMason DA; Ehlers JD; Close TJ; Roberts PA
    J Exp Bot; 2008; 59(6):1305-13. PubMed ID: 18375605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of the Hahsp17.7G4 promoter by root-knot nematodes: involvement of heat-shock elements in promoter activity in giant cells.
    Escobar C; Barcala M; Portillo M; Almoguera C; Jordano J; Fenoll C
    Mol Plant Microbe Interact; 2003 Dec; 16(12):1062-8. PubMed ID: 14651339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wall ingrowth formation in transfer cells: novel examples of localized wall deposition in plant cells.
    McCurdy DW; Patrick JW; Offler CE
    Curr Opin Plant Biol; 2008 Dec; 11(6):653-61. PubMed ID: 18849189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging plasmodesmata with high-resolution scanning electron microscopy.
    Barton DA; Overall RL
    Methods Mol Biol; 2015; 1217():55-65. PubMed ID: 25287195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ultrastructure and histochemistry of a nematode-induced giant cell.
    BIRD AF
    J Biophys Biochem Cytol; 1961 Dec; 11(3):701-15. PubMed ID: 13869341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overlapping plant signal transduction pathways induced by a parasitic nematode and a rhizobial endosymbiont.
    Koltai H; Dhandaydham M; Opperman C; Thomas J; Bird D
    Mol Plant Microbe Interact; 2001 Oct; 14(10):1168-77. PubMed ID: 11605956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The endosymbiosis-induced genes ENOD40 and CCS52a are involved in endoparasitic-nematode interactions in Medicago truncatula.
    Favery B; Complainville A; Vinardell JM; Lecomte P; Vaubert D; Mergaert P; Kondorosi A; Kondorosi E; Crespi M; Abad P
    Mol Plant Microbe Interact; 2002 Oct; 15(10):1008-13. PubMed ID: 12437298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A profile of putative parasitism genes expressed in the esophageal gland cells of the root-knot nematode Meloidogyne incognita.
    Huang G; Gao B; Maier T; Allen R; Davis EL; Baum TJ; Hussey RS
    Mol Plant Microbe Interact; 2003 May; 16(5):376-81. PubMed ID: 12744507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Host Response to Sarisodera hydrophila Wouts and Sher, 1971.
    Mundo-Ocampo M; Baldwin JG
    J Nematol; 1983 Apr; 15(2):259-68. PubMed ID: 19295800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dodder hyphae invade the host: a structural and immunocytochemical characterization.
    Vaughn KC
    Protoplasma; 2003 Mar; 220(3-4):189-200. PubMed ID: 12664283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.