BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1001022)

  • 1. Scanning electron microscopy in nematode-induced giant transfer cells.
    Jones MG; Dropkin VH
    Cytobios; 1976; 15(58-59):149-61. PubMed ID: 1001022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure of syncytia induced by the phytoparasitic nematode Nacobbus aberrans in tomato roots, and the possible role of plasmodesmata in their nutrition.
    Jones MG; Payne HL
    J Cell Sci; 1977 Feb; 23():299-313. PubMed ID: 197113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of callose deposition along plasmodesmata in nematode feeding sites.
    Hofmann J; Youssef-Banora M; de Almeida-Engler J; Grundler FM
    Mol Plant Microbe Interact; 2010 May; 23(5):549-57. PubMed ID: 20367463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer cell wall architecture: a contribution towards understanding localized wall deposition.
    Talbot MJ; Offler CE; McCurdy DW
    Protoplasma; 2002 May; 219(3-4):197-209. PubMed ID: 12099220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wall modifications in developing giant cells of Vicia faba and Cucumis sativus induced by root knot nematode, Meloidogyne javanica.
    Huang CS; Maggenti AR
    Phytopathology; 1969 Jul; 59(7):931-7. PubMed ID: 5799564
    [No Abstract]   [Full Text] [Related]  

  • 6. Three-dimensional ultrastructure of feeding tubes and interconnected endoplasmic reticulum in root-knot nematode-induced giant cells in rose balsam.
    Miyashita N; Koga H
    Protoplasma; 2017 Sep; 254(5):1941-1951. PubMed ID: 28204899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early stages of nematode-induced giant-cell formation in roots of Impatiens balsamina.
    Jones MG; Payne HL
    J Nematol; 1978 Jan; 10(1):70-84. PubMed ID: 19305816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose synthesis is required for deposition of reticulate wall ingrowths in transfer cells.
    Talbot MJ; Wasteneys GO; Offler CE; McCurdy DW
    Plant Cell Physiol; 2007 Jan; 48(1):147-58. PubMed ID: 17169922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical composition and ultrastructure of broad bean (Vicia faba L.) nodule endodermis in comparison to the root endodermis.
    Hartmann K; Peiter E; Koch K; Schubert S; Schreiber L
    Planta; 2002 May; 215(1):14-25. PubMed ID: 12012237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electron microscopic study of glycogen and lipid in female Meloidogyne incognita (root-knot nematode).
    Dropkin VH; Acedo J
    J Parasitol; 1974 Dec; 60(6):1013-21. PubMed ID: 4436740
    [No Abstract]   [Full Text] [Related]  

  • 11. Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation.
    Das S; DeMason DA; Ehlers JD; Close TJ; Roberts PA
    J Exp Bot; 2008; 59(6):1305-13. PubMed ID: 18375605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of the Hahsp17.7G4 promoter by root-knot nematodes: involvement of heat-shock elements in promoter activity in giant cells.
    Escobar C; Barcala M; Portillo M; Almoguera C; Jordano J; Fenoll C
    Mol Plant Microbe Interact; 2003 Dec; 16(12):1062-8. PubMed ID: 14651339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wall ingrowth formation in transfer cells: novel examples of localized wall deposition in plant cells.
    McCurdy DW; Patrick JW; Offler CE
    Curr Opin Plant Biol; 2008 Dec; 11(6):653-61. PubMed ID: 18849189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging plasmodesmata with high-resolution scanning electron microscopy.
    Barton DA; Overall RL
    Methods Mol Biol; 2015; 1217():55-65. PubMed ID: 25287195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ultrastructure and histochemistry of a nematode-induced giant cell.
    BIRD AF
    J Biophys Biochem Cytol; 1961 Dec; 11(3):701-15. PubMed ID: 13869341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overlapping plant signal transduction pathways induced by a parasitic nematode and a rhizobial endosymbiont.
    Koltai H; Dhandaydham M; Opperman C; Thomas J; Bird D
    Mol Plant Microbe Interact; 2001 Oct; 14(10):1168-77. PubMed ID: 11605956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The endosymbiosis-induced genes ENOD40 and CCS52a are involved in endoparasitic-nematode interactions in Medicago truncatula.
    Favery B; Complainville A; Vinardell JM; Lecomte P; Vaubert D; Mergaert P; Kondorosi A; Kondorosi E; Crespi M; Abad P
    Mol Plant Microbe Interact; 2002 Oct; 15(10):1008-13. PubMed ID: 12437298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A profile of putative parasitism genes expressed in the esophageal gland cells of the root-knot nematode Meloidogyne incognita.
    Huang G; Gao B; Maier T; Allen R; Davis EL; Baum TJ; Hussey RS
    Mol Plant Microbe Interact; 2003 May; 16(5):376-81. PubMed ID: 12744507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Host Response to Sarisodera hydrophila Wouts and Sher, 1971.
    Mundo-Ocampo M; Baldwin JG
    J Nematol; 1983 Apr; 15(2):259-68. PubMed ID: 19295800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dodder hyphae invade the host: a structural and immunocytochemical characterization.
    Vaughn KC
    Protoplasma; 2003 Mar; 220(3-4):189-200. PubMed ID: 12664283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.