These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 10010279)

  • 1. Excitonic model for second-order resonant Raman scattering.
    García-Cristóbal A; Cantarero A; Trallero-Giner C; Cardona M
    Phys Rev B Condens Matter; 1994 May; 49(19):13430-13445. PubMed ID: 10010279
    [No Abstract]   [Full Text] [Related]  

  • 2. Excited excitonic states in 1L, 2L, 3L, and bulk WSe2 observed by resonant Raman spectroscopy.
    del Corro E; Terrones H; Elias A; Fantini C; Feng S; Nguyen MA; Mallouk TE; Terrones M; Pimenta MA
    ACS Nano; 2014 Sep; 8(9):9629-35. PubMed ID: 25162682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface enhanced resonant Raman scattering in hybrid MoSe
    Abid I; Chen W; Yuan J; Najmaei S; Peñafiel EC; Péchou R; Large N; Lou J; Mlayah A
    Opt Express; 2018 Oct; 26(22):29411-29423. PubMed ID: 30470105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregated enhanced Raman scattering in Fe(III)PPIX solutions: the effects of concentration and chloroquine on excitonic interactions.
    Webster GT; McNaughton D; Wood BR
    J Phys Chem B; 2009 May; 113(19):6910-6. PubMed ID: 19371036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of time evolution from resonant Raman scattering to excitonic-polariton luminescence in ZnTe.
    Oka Y; Nakamura K; Fujisaki H
    Phys Rev Lett; 1986 Dec; 57(22):2857-2860. PubMed ID: 10033884
    [No Abstract]   [Full Text] [Related]  

  • 6. Resonant Raman scattering in GaP: Excitonic and interference effects near the E0 and E0+ Delta 0 gaps.
    Kauschke W; Vorlícek V; Cardona M
    Phys Rev B Condens Matter; 1987 Dec; 36(17):9129-9133. PubMed ID: 9942774
    [No Abstract]   [Full Text] [Related]  

  • 7. Resonant surface plasmon-exciton interaction in hybrid MoSe2@Au nanostructures.
    Abid I; Bohloul A; Najmaei S; Avendano C; Liu HL; Péchou R; Mlayah A; Lou J
    Nanoscale; 2016 Apr; 8(15):8151-9. PubMed ID: 27029770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin-orbit splitting in single-layer MoS2 revealed by triply resonant Raman scattering.
    Sun L; Yan J; Zhan D; Liu L; Hu H; Li H; Tay BK; Kuo JL; Huang CC; Hewak DW; Lee PS; Shen ZX
    Phys Rev Lett; 2013 Sep; 111(12):126801. PubMed ID: 24093287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auger resonant Raman scattering in itinerant electron systems: continuum excitation in Cu.
    Föhlisch A; Karis O; Weinelt M; Hasselström J; Nilsson A; Mårtensson N
    Phys Rev Lett; 2002 Jan; 88(2):027601. PubMed ID: 11801036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (n,m) Assignments of Metallic Single-Walled Carbon Nanotubes by Raman Spectroscopy: The Importance of Electronic Raman Scattering.
    Zhang D; Yang J; Li M; Li Y
    ACS Nano; 2016 Dec; 10(12):10789-10797. PubMed ID: 28024329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides.
    Pimenta MA; Del Corro E; Carvalho BR; Fantini C; Malard LM
    Acc Chem Res; 2015 Jan; 48(1):41-7. PubMed ID: 25490518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab Initio Approach to Second-order Resonant Raman Scattering Including Exciton-Phonon Interaction.
    Gillet Y; Kontur S; Giantomassi M; Draxl C; Gonze X
    Sci Rep; 2017 Aug; 7(1):7344. PubMed ID: 28779127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the exciton binding energy in single-walled carbon nanotubes.
    Wang Z; Pedrosa H; Krauss T; Rothberg L
    Phys Rev Lett; 2006 Feb; 96(4):047403. PubMed ID: 16486895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic-bead-based sub-femtomolar immunoassay using resonant Raman scattering signals of ZnS nanoparticles.
    Ding Y; Cong T; Chu X; Jia Y; Hong X; Liu Y
    Anal Bioanal Chem; 2016 Jul; 408(18):5013-9. PubMed ID: 27173389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonant Raman scattering based approaches for the quantitative assessment of nanometric ZnMgO layers in high efficiency chalcogenide solar cells.
    Guc M; Hariskos D; Calvo-Barrio L; Jackson P; Oliva F; Pistor P; Perez-Rodriguez A; Izquierdo-Roca V
    Sci Rep; 2017 Apr; 7(1):1144. PubMed ID: 28442796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the chemical bonding effects in the Raman response: benzenethiol adsorbed on silver clusters.
    Saikin SK; Olivares-Amaya R; Rappoport D; Stopa M; Aspuru-Guzik A
    Phys Chem Chem Phys; 2009 Nov; 11(41):9401-11. PubMed ID: 19830323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous lattice vibrations of monolayer MoS2 probed by ultraviolet Raman scattering.
    Liu HL; Guo H; Yang T; Zhang Z; Kumamoto Y; Shen CC; Hsu YT; Li LJ; Saito R; Kawata S
    Phys Chem Chem Phys; 2015 Jun; 17(22):14561-8. PubMed ID: 25969355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-power-induced multiphonon resonant raman scattering in laser-heated CdS nanocrystal.
    Sahoo S; Arora AK
    J Phys Chem B; 2010 Apr; 114(12):4199-203. PubMed ID: 20205373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-Raman Scattering Microscopy: Resolution and Enhancement.
    Kawata S; Ichimura T; Taguchi A; Kumamoto Y
    Chem Rev; 2017 Apr; 117(7):4983-5001. PubMed ID: 28337915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinguishing Individual DNA Bases in a Network by Non-Resonant Tip-Enhanced Raman Scattering.
    Zhang R; Zhang X; Wang H; Zhang Y; Jiang S; Hu C; Zhang Y; Luo Y; Dong Z
    Angew Chem Int Ed Engl; 2017 May; 56(20):5561-5564. PubMed ID: 28394094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.