These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 10011221)

  • 41. Ginzburg-Landau theory of shear moduli in anisotropic superconductors.
    Petzinger KG; Tuttle B
    Phys Rev B Condens Matter; 1993 Feb; 47(5):2909-2912. PubMed ID: 10006359
    [No Abstract]   [Full Text] [Related]  

  • 42. Magnetic-field penetration in superconductors studied using the Landau-Ginzburg model and nonlinear techniques.
    Vos K; Dixon JM; Tuszynski JA
    Phys Rev B Condens Matter; 1991 Dec; 44(21):11933-11950. PubMed ID: 9999330
    [No Abstract]   [Full Text] [Related]  

  • 43. Solution to Ginzburg-Landau equations for inhomogeneous superconductors by nonlinear optimization.
    Garner J; Benedek R
    Phys Rev B Condens Matter; 1990 Oct; 42(10):6027-6034. PubMed ID: 9994677
    [No Abstract]   [Full Text] [Related]  

  • 44. Ginzburg-Landau model of hexagonal superconductors: Application to UPt3.
    Agterberg DF; Walker MB
    Phys Rev B Condens Matter; 1995 Apr; 51(13):8481-8488. PubMed ID: 9977461
    [No Abstract]   [Full Text] [Related]  

  • 45. Supercurrent tunneling between conventional and unconventional superconductors: A Ginzburg-Landau approach.
    Yip S; De Alcantara Bonfim OF ; Kumar P
    Phys Rev B Condens Matter; 1990 Jun; 41(16):11214-11228. PubMed ID: 9993542
    [No Abstract]   [Full Text] [Related]  

  • 46. Ginzburg-Landau theory of deformable superconductors.
    Svensmark H; Falicov LM
    Phys Rev B Condens Matter; 1989 Jul; 40(1):201-209. PubMed ID: 9990903
    [No Abstract]   [Full Text] [Related]  

  • 47. Ginzburg-Landau theory of defects in d-wave superconductors.
    Alvarez JJ; Buscaglia GC; Balseiro CA
    Phys Rev B Condens Matter; 1996 Dec; 54(22):16168-16171. PubMed ID: 9985693
    [No Abstract]   [Full Text] [Related]  

  • 48. Surface boundary conditions for the Ginzburg-Landau theory of d-wave superconductors.
    Alber M; Bäuml B; Ernst R; Kienle D; Kopf A; Rouchal M
    Phys Rev B Condens Matter; 1996 Mar; 53(9):5863-5871. PubMed ID: 9984195
    [No Abstract]   [Full Text] [Related]  

  • 49. Ginzburg-Landau equations for mixed s+d symmetry superconductors.
    Ren Y; Xu JH; Ting CS
    Phys Rev B Condens Matter; 1996 Feb; 53(5):2249-2252. PubMed ID: 9983722
    [No Abstract]   [Full Text] [Related]  

  • 50. Ginzburg-Landau theory of vortices in d-wave superconductors.
    Berlinsky AJ; Fetter AL; Franz M; Kallin C; Soininen PI
    Phys Rev Lett; 1995 Sep; 75(11):2200-2203. PubMed ID: 10059239
    [No Abstract]   [Full Text] [Related]  

  • 51. Exact solution of the Ginzburg-Landau equations for the upper critical field of multicomponent superconductors.
    Sundaram SK; Joynt R
    Phys Rev Lett; 1991 Jan; 66(4):512-515. PubMed ID: 10043826
    [No Abstract]   [Full Text] [Related]  

  • 52. Numerical relaxation approach for solving the general Ginzburg-Landau equations for type-II superconductors.
    Wang ZD; Hu C
    Phys Rev B Condens Matter; 1991 Dec; 44(21):11918-11923. PubMed ID: 9999328
    [No Abstract]   [Full Text] [Related]  

  • 53. Ambegaokar-Baratoff-Ginzburg-Landau crossover effects on the critical current density of granular superconductors.
    Clem JR; Bumble B; Raider SI; Gallagher WJ; Shih YC
    Phys Rev B Condens Matter; 1987 May; 35(13):6637-6642. PubMed ID: 9940910
    [No Abstract]   [Full Text] [Related]  

  • 54. Neutron-spin resonance in the optimally electron-doped superconductor Nd1.85Ce0.15CuO4-delta.
    Zhao J; Dai P; Li S; Freeman PG; Onose Y; Tokura Y
    Phys Rev Lett; 2007 Jul; 99(1):017001. PubMed ID: 17678181
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vortex pinning by cylindrical defects in type-II superconductors: Numerical solutions to the Ginzburg-Landau equations.
    Maurer SM; Yeh N; Tombrello TA
    Phys Rev B Condens Matter; 1996 Dec; 54(21):15372-15379. PubMed ID: 9985603
    [No Abstract]   [Full Text] [Related]  

  • 56. Virial theorem for Ginzburg-Landau theories with potential applications to numerical studies of type-II superconductors.
    Doria MM; Gubernatis JE; Rainer D
    Phys Rev B Condens Matter; 1989 May; 39(13):9573-9575. PubMed ID: 9947694
    [No Abstract]   [Full Text] [Related]  

  • 57. Ginzburg-Landau-Gor'kov equations, currents, and electromagnetic properties of coexisting charge density wave superconductors.
    Malinsky J; Su ZB; Arya K; Birman JL
    Phys Rev Lett; 1985 Oct; 55(18):1900-1903. PubMed ID: 10031956
    [No Abstract]   [Full Text] [Related]  

  • 58. Magnetization measurements and Ginzburg-Landau simulations of micron-size β-tin samples: evidence for an unusual critical behavior of mesoscopic type-I superconductors.
    Müller A; Milošević MV; Dale SE; Engbarth MA; Bending SJ
    Phys Rev Lett; 2012 Nov; 109(19):197003. PubMed ID: 23215418
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Confinement effects on intermediate-state flux patterns in mesoscopic type-I superconductors.
    Berdiyorov GR; Hernandez AD; Peeters FM
    Phys Rev Lett; 2009 Dec; 103(26):267002. PubMed ID: 20366337
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Angle and frequency dependence of self-energy from spin fluctuation mediated d-wave pairing for high temperature superconductors.
    Hong SH; Choi HY
    J Phys Condens Matter; 2013 Sep; 25(36):365702. PubMed ID: 23934792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.