These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 10016668)

  • 1. Effective action of a scalar field in a curved spacetime with a small inhomogeneity.
    Huang WH
    Phys Rev D Part Fields; 1993 Oct; 48(8):3914-3917. PubMed ID: 10016668
    [No Abstract]   [Full Text] [Related]  

  • 2. Calculating the effective action for a self-interacting scalar quantum field theory in a curved background spacetime.
    Guven J
    Phys Rev D Part Fields; 1988 Apr; 37(8):2182-2195. PubMed ID: 9958923
    [No Abstract]   [Full Text] [Related]  

  • 3. Effective Lagrangian for self-interacting scalar field theories in curved spacetime.
    Kirsten K; Cognola G; Vanzo L
    Phys Rev D Part Fields; 1993 Sep; 48(6):2813-2822. PubMed ID: 10016528
    [No Abstract]   [Full Text] [Related]  

  • 4. Renormalization of interacting scalar field theory in three-dimensional curved spacetime.
    Huish GJ; Toms DJ
    Phys Rev D Part Fields; 1994 Jun; 49(12):6767-6777. PubMed ID: 10016997
    [No Abstract]   [Full Text] [Related]  

  • 5. Renormalization group and spontaneous compactification of a higher-dimensional scalar field theory in curved spacetime.
    Elizalde E; Kantowski R; Odintsov SD
    Phys Rev D Part Fields; 1996 Nov; 54(10):6372-6380. PubMed ID: 10020638
    [No Abstract]   [Full Text] [Related]  

  • 6. General proof of the averaged null energy condition for a massless scalar field in two-dimensional curved spacetime.
    Wald R; Yurtsever U
    Phys Rev D Part Fields; 1991 Jul; 44(2):403-416. PubMed ID: 10013893
    [No Abstract]   [Full Text] [Related]  

  • 7. Effective Lagrangian and the back-reaction problem in a self-interacting O(N) scalar theory in curved spacetime.
    Elizalde E; Kirsten K; Odintsov SD
    Phys Rev D Part Fields; 1994 Oct; 50(8):5137-5147. PubMed ID: 10018163
    [No Abstract]   [Full Text] [Related]  

  • 8. Scalar curvature of a causal set.
    Benincasa DM; Dowker F
    Phys Rev Lett; 2010 May; 104(18):181301. PubMed ID: 20482164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bose-Einstein condensation for interacting scalar fields in curved spacetime.
    Kirsten K; Toms DJ
    Phys Rev D Part Fields; 1995 Jun; 51(12):6886-6900. PubMed ID: 10018451
    [No Abstract]   [Full Text] [Related]  

  • 10. Frame-dragging vortexes and tidal tendexes attached to colliding black holes: visualizing the curvature of spacetime.
    Owen R; Brink J; Chen Y; Kaplan JD; Lovelace G; Matthews KD; Nichols DA; Scheel MA; Zhang F; Zimmerman A; Thorne KS
    Phys Rev Lett; 2011 Apr; 106(15):151101. PubMed ID: 21568540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renormalization group and nonlocal terms in the curved-spacetime effective action: Weak-field results.
    Parker L; Toms DJ
    Phys Rev D Part Fields; 1985 Sep; 32(6):1409-1420. PubMed ID: 9956296
    [No Abstract]   [Full Text] [Related]  

  • 12. Feynman propagator for a free scalar field on a causal set.
    Johnston S
    Phys Rev Lett; 2009 Oct; 103(18):180401. PubMed ID: 19905790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-consistent orbital evolution of a particle around a Schwarzschild black hole.
    Diener P; Vega I; Wardell B; Detweiler S
    Phys Rev Lett; 2012 May; 108(19):191102. PubMed ID: 23003022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classical black holes: the nonlinear dynamics of curved spacetime.
    Thorne KS
    Science; 2012 Aug; 337(6094):536-8. PubMed ID: 22859479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General second-order scalar-tensor theory and self-tuning.
    Charmousis C; Copeland EJ; Padilla A; Saffin PM
    Phys Rev Lett; 2012 Feb; 108(5):051101. PubMed ID: 22400919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping curved spacetimes into Dirac spinors.
    SabĂ­n C
    Sci Rep; 2017 Jan; 7():40346. PubMed ID: 28074908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of de Sitter Spacetime against Infrared Quantum Scalar Field Fluctuations.
    Moreau G; Serreau J
    Phys Rev Lett; 2019 Jan; 122(1):011302. PubMed ID: 31012677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-temperature quantum field theory in curved spacetime: Quasilocal effective Lagrangians.
    Hu BL; Critchley R; Stylianopoulos A
    Phys Rev D Part Fields; 1987 Jan; 35(2):510-527. PubMed ID: 9957684
    [No Abstract]   [Full Text] [Related]  

  • 19. Effective potential for a covariantly constant gauge field in curved spacetime.
    Elizalde E; Odintsov SD; Romeo A
    Phys Rev D Part Fields; 1996 Sep; 54(6):4152-4159. PubMed ID: 10021091
    [No Abstract]   [Full Text] [Related]  

  • 20. Holographic de Sitter Geometry from Entanglement in Conformal Field Theory.
    de Boer J; Heller MP; Myers RC; Neiman Y
    Phys Rev Lett; 2016 Feb; 116(6):061602. PubMed ID: 26918979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.