These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 10020254)
1. Application of the Hamiltonian formulation of Palumbo's new lattice Yang-Mills theory. Borasoy B; Kramer W; Schütte D Phys Rev D Part Fields; 1996 Mar; 53(5):2599-2604. PubMed ID: 10020254 [No Abstract] [Full Text] [Related]
2. Hamiltonian formulation of Palumbo's noncompact lattice gauge theory. Diekmann B; Schütte D; Kröger H Phys Rev D Part Fields; 1994 Apr; 49(7):3589-3597. PubMed ID: 10017353 [No Abstract] [Full Text] [Related]
3. Riemannian geometric approach to chaos in SU(2) Yang-Mills theory. Kawabe T; Koyanagi S Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036222. PubMed ID: 18517500 [TBL] [Abstract][Full Text] [Related]
4. Elliptic Yang-Mills equation. Tian G Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15281-6. PubMed ID: 12426400 [TBL] [Abstract][Full Text] [Related]
5. Solving pure yang-mills theory in dimensions. Leigh RG; Minic D; Yelnikov A Phys Rev Lett; 2006 Jun; 96(22):222001. PubMed ID: 16803302 [TBL] [Abstract][Full Text] [Related]
6. Hamiltonian analysis of topologically massive Yang-Mills theory. Evens D; Kunstatter G Phys Rev D Part Fields; 1988 Jan; 37(2):435-440. PubMed ID: 9958698 [No Abstract] [Full Text] [Related]
8. Composite Operators in the Twistor Formulation of N=4 Supersymmetric Yang-Mills Theory. Koster L; Mitev V; Staudacher M; Wilhelm M Phys Rev Lett; 2016 Jul; 117(1):011601. PubMed ID: 27419558 [TBL] [Abstract][Full Text] [Related]
9. Numerical Results for the Lightest Bound States in N=1 Supersymmetric SU(3) Yang-Mills Theory. Ali S; Bergner G; Gerber H; Montvay I; Münster G; Piemonte S; Scior P Phys Rev Lett; 2019 Jun; 122(22):221601. PubMed ID: 31283264 [TBL] [Abstract][Full Text] [Related]
10. Thermal spectral functions of strongly coupled N = 4 supersymmetric Yang-Mills theory. Kovtun P; Starinets A Phys Rev Lett; 2006 Apr; 96(13):131601. PubMed ID: 16711978 [TBL] [Abstract][Full Text] [Related]
11. Four-dimensional SU(2) Yang-Mills theory on a pseudorandom lattice. Colangelo P; Cosmai L; Scrimieri E Phys Rev D Part Fields; 1988 Feb; 37(4):1090-1093. PubMed ID: 9958783 [No Abstract] [Full Text] [Related]
12. Renormalization and topological susceptibility on the lattice: SU(2) Yang-Mills theory. Allés B; Campostrini M; Di Giacomo A ; Gündüç Y; Vicari E Phys Rev D Part Fields; 1993 Sep; 48(5):2284-2289. PubMed ID: 10016464 [No Abstract] [Full Text] [Related]
13. Embedding Yang-Mills theory into universal Yang-Mills theory. Rajeev SG Phys Rev D Part Fields; 1991 Sep; 44(6):1836-1841. PubMed ID: 10014064 [No Abstract] [Full Text] [Related]
14. Yang-Mills theory on a momentum lattice: Gauge invariance, chiral invariance, and no fermion doubling. Bérubé D; Kröger H; Lafrance R; Marleau L Phys Rev D Part Fields; 1991 Feb; 43(4):1385-1392. PubMed ID: 10013509 [No Abstract] [Full Text] [Related]
15. Holography and noncommutative yang-mills theory. Li M; Wu YS Phys Rev Lett; 2000 Mar; 84(10):2084-7. PubMed ID: 11017215 [TBL] [Abstract][Full Text] [Related]