These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 10021375)

  • 21. Between genotype and phenotype: protein chaperones and evolvability.
    Rutherford SL
    Nat Rev Genet; 2003 Apr; 4(4):263-74. PubMed ID: 12671657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highlights of the 1998 Cold Spring Harbor Meeting: Molecular chaperones and the heat shock response.
    Bensaude O; Hightower LE
    Cell Stress Chaperones; 1999 Mar; 4(1):60-5. PubMed ID: 10467110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A S52P mutation in the 'α-crystallin domain' of Mycobacterium leprae HSP18 reduces its oligomeric size and chaperone function.
    Nandi SK; Rehna EA; Panda AK; Shiburaj S; Dharmalingam K; Biswas A
    FEBS J; 2013 Dec; 280(23):5994-6009. PubMed ID: 24024660
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells.
    Thomas JG; Baneyx F
    Mol Microbiol; 2000 Jun; 36(6):1360-70. PubMed ID: 10931286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stress models for the study of intermediate filament function.
    Lane EB; Pekny M
    Methods Cell Biol; 2004; 78():229-64. PubMed ID: 15646621
    [No Abstract]   [Full Text] [Related]  

  • 26. Folding and binding: problems with proteins.
    Ellis RJ; Hart FU
    Curr Opin Struct Biol; 2000 Feb; 10(1):13-5. PubMed ID: 10766516
    [No Abstract]   [Full Text] [Related]  

  • 27. Pressure activation of the chaperone function of small heat shock proteins.
    Tölgyesi E; Böde CS; Smelleri L; Kim DR; Kim KK; Heremans K; Fidy J
    Cell Mol Biol (Noisy-le-grand); 2004 Jun; 50(4):361-9. PubMed ID: 15529746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro.
    Zmijewski MA; Kwiatkowska JM; Lipińska B
    Arch Microbiol; 2004 Dec; 182(6):436-49. PubMed ID: 15448982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cumulative impact of chaperone-mediated folding on genome evolution.
    Bogumil D; Dagan T
    Biochemistry; 2012 Dec; 51(50):9941-53. PubMed ID: 23167595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of vimentin as a novel target of HSF4 in lens development and cataract by proteomic analysis.
    Mou L; Xu JY; Li W; Lei X; Wu Y; Xu G; Kong X; Xu GT
    Invest Ophthalmol Vis Sci; 2010 Jan; 51(1):396-404. PubMed ID: 19628735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular chaperone functions of heat-shock proteins.
    Hendrick JP; Hartl FU
    Annu Rev Biochem; 1993; 62():349-84. PubMed ID: 8102520
    [No Abstract]   [Full Text] [Related]  

  • 32. Lens alpha-crystallin: chaperone-like properties.
    Horwitz J; Huang QL; Ding L; Bova MP
    Methods Enzymol; 1998; 290():365-83. PubMed ID: 9534176
    [No Abstract]   [Full Text] [Related]  

  • 33. Structural and functional homology between periplasmic bacterial molecular chaperones and small heat shock proteins.
    Zav'yalov VP; Zav'yalova GA; Denesyuk AI; Gaestel M; Korpela T
    FEMS Immunol Med Microbiol; 1995 Jul; 11(4):265-72. PubMed ID: 8541803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alpha B-crystallin is a small heat shock protein.
    Klemenz R; Fröhli E; Steiger RH; Schäfer R; Aoyama A
    Proc Natl Acad Sci U S A; 1991 May; 88(9):3652-6. PubMed ID: 2023914
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immediate response of the DnaK molecular chaperone system to heat shock.
    Siegenthaler RK; Grimshaw JP; Christen P
    FEBS Lett; 2004 Mar; 562(1-3):105-10. PubMed ID: 15044009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stress proteins in Alzheimer's disease.
    Smith RC; Rosen KM; Pola R; Magrané J
    Int J Hyperthermia; 2005 Aug; 21(5):421-31. PubMed ID: 16048839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration.
    Diamant S; Goloubinoff P
    Biochemistry; 1998 Jul; 37(27):9688-94. PubMed ID: 9657681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function.
    Cheetham ME; Caplan AJ
    Cell Stress Chaperones; 1998 Mar; 3(1):28-36. PubMed ID: 9585179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of the DnaK-DnaJ-GrpE chaperone team in protein secretion in Escherichia coli.
    Wild J; Rossmeissl P; Walter WA; Gross CA
    J Bacteriol; 1996 Jun; 178(12):3608-13. PubMed ID: 8655561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Folding properties of the nucleotide exchange factor GrpE from Thermus thermophilus: GrpE is a thermosensor that mediates heat shock response.
    Groemping Y; Reinstein J
    J Mol Biol; 2001 Nov; 314(1):167-78. PubMed ID: 11724541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.