These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 10021419)

  • 41. Iminodipropionic acid as the leaving group for DNA polymerization by HIV-1 reverse transcriptase.
    Song XP; Bouillon C; Lescrinier E; Herdewijn P
    Chembiochem; 2011 Aug; 12(12):1868-80. PubMed ID: 21714056
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Modified nucleosides and nucleotides inhibiting HIV replication: analysis of the situation and potential prospects].
    Kraevskiĭ AA
    Mol Biol (Mosk); 1992; 26(4):725-44. PubMed ID: 1435770
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanism of polyoxometalate-mediated inactivation of DNA polymerases: an analysis with HIV-1 reverse transcriptase indicates specificity for the DNA-binding cleft.
    Sarafianos SG; Kortz U; Pope MT; Modak MJ
    Biochem J; 1996 Oct; 319 ( Pt 2)(Pt 2):619-26. PubMed ID: 8912703
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Ways of finding inhibitors of HIV reproduction among nucleotides].
    Kraevskiĭ AA
    Mol Biol (Mosk); 1994; 28(6):1245-57. PubMed ID: 7885326
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recognition of threosyl nucleotides by DNA and RNA polymerases.
    Kempeneers V; Vastmans K; Rozenski J; Herdewijn P
    Nucleic Acids Res; 2003 Nov; 31(21):6221-6. PubMed ID: 14576309
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Implications of active site constraints on varied DNA polymerase selectivity.
    Strerath M; Cramer J; Restle T; Marx A
    J Am Chem Soc; 2002 Sep; 124(38):11230-1. PubMed ID: 12236712
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A synthetic substrate of DNA polymerase deviating from the bases, sugar, and leaving group of canonical deoxynucleoside triphosphates.
    Jang MY; Song XP; Froeyen M; Marlière P; Lescrinier E; Rozenski J; Herdewijn P
    Chem Biol; 2013 Mar; 20(3):416-23. PubMed ID: 23521798
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dipeptides as leaving group in the enzyme-catalyzed DNA synthesis.
    Song XP; Bouillon C; Lescrinier E; Herdewijn P
    Chem Biodivers; 2012 Dec; 9(12):2685-700. PubMed ID: 23255441
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nucleotide modification at the gamma-phosphate leads to the improved fidelity of HIV-1 reverse transcriptase.
    Mulder BA; Anaya S; Yu P; Lee KW; Nguyen A; Murphy J; Willson R; Briggs JM; Gao X; Hardin SH
    Nucleic Acids Res; 2005; 33(15):4865-73. PubMed ID: 16141194
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigation of the DNA-dependent cyclohexenyl nucleic acid polymerization and the cyclohexenyl nucleic acid-dependent DNA polymerization.
    Kempeneers V; Renders M; Froeyen M; Herdewijn P
    Nucleic Acids Res; 2005; 33(12):3828-36. PubMed ID: 16027107
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Insights into the roles of desolvation and π-electron interactions during DNA polymerization.
    Motea EA; Lee I; Berdis AJ
    Chembiochem; 2013 Mar; 14(4):489-98. PubMed ID: 23404822
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On chip electrochemical detection of sarcoma protein kinase and HIV-1 reverse transcriptase.
    Martić S; Labib M; Kraatz HB
    Talanta; 2011 Oct; 85(5):2430-6. PubMed ID: 21962664
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Trapping HIV-1 reverse transcriptase before and after translocation on DNA.
    Sarafianos SG; Clark AD; Tuske S; Squire CJ; Das K; Sheng D; Ilankumaran P; Ramesha AR; Kroth H; Sayer JM; Jerina DM; Boyer PL; Hughes SH; Arnold E
    J Biol Chem; 2003 May; 278(18):16280-8. PubMed ID: 12554739
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exploring the Reaction Mechanism of HIV Reverse Transcriptase with a Nucleotide Substrate.
    Wang H; Huang N; Dangerfield T; Johnson KA; Gao J; Elber R
    J Phys Chem B; 2020 May; 124(21):4270-4283. PubMed ID: 32364738
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Catalytic Magnesium as a Door Stop for DNA Sliding.
    Wang H; Elber R
    J Phys Chem B; 2021 Apr; 125(14):3494-3500. PubMed ID: 33819040
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 3-Phosphono-L-alanine as pyrophosphate mimic for DNA synthesis using HIV-1 reverse transcriptase.
    Yang S; Froeyen M; Lescrinier E; Marlière P; Herdewijn P
    Org Biomol Chem; 2011 Jan; 9(1):111-9. PubMed ID: 21103490
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the origin of primitive cells: from nutrient intake to elongation of encapsulated nucleotides.
    Meierhenrich UJ; Filippi JJ; Meinert C; Vierling P; Dworkin JP
    Angew Chem Int Ed Engl; 2010 May; 49(22):3738-50. PubMed ID: 20437432
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Minimalist model for force-dependent DNA replication.
    Nong EX; DeVience SJ; Herschbach D
    Biophys J; 2012 Feb; 102(4):810-8. PubMed ID: 22385852
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DNA crystals as vehicles for biocatalysis.
    Geng C; Paukstelis PJ
    J Am Chem Soc; 2014 Jun; 136(22):7817-20. PubMed ID: 24835688
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthetically modified DNAs as substrates for polymerases.
    Kool ET
    Curr Opin Chem Biol; 2000 Dec; 4(6):602-8. PubMed ID: 11102863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.