These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 10022062)

  • 1. 13C-NMR study of propionate metabolism by sludges from bioreactors treating sulfate and sulfide rich wastewater.
    Lens PN; Dijkema C; Stams AJ
    Biodegradation; 1998; 9(3-4):179-86. PubMed ID: 10022062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.
    Stams AJ; Plugge CM; de Bok FA; van Houten BH; Lens P; Dijkman H; Weijma J
    Water Sci Technol; 2005; 52(1-2):13-20. PubMed ID: 16187442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir.
    Chen C; Shen Y; An D; Voordouw G
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propionic acid accumulation and degradation during restart of a full-scale anaerobic biowaste digester.
    Gallert C; Winter J
    Bioresour Technol; 2008 Jan; 99(1):170-8. PubMed ID: 17197176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High sulfate reduction efficiency in a UASB using an alternative source of sulfidogenic sludge derived from hydrothermal vent sediments.
    GarcĂ­a-Solares SM; Ordaz A; Monroy-Hermosillo O; Jan-Roblero J; Guerrero-Barajas C
    Appl Biochem Biotechnol; 2014 Dec; 174(8):2919-40. PubMed ID: 25234397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of volatile fatty acid production in granular sludge from a UASB reactor.
    Dogan T; Ince O; Oz NA; Ince BK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(3):633-44. PubMed ID: 15756974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of microbial trophic structures of two anaerobic bioreactors processing sulfate-rich waste streams.
    Briones AM; Daugherty BJ; Angenent LT; Rausch K; Tumbleson M; Raskin L
    Water Res; 2009 Oct; 43(18):4451-60. PubMed ID: 19643455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron donors for biological sulfate reduction.
    Liamleam W; Annachhatre AP
    Biotechnol Adv; 2007; 25(5):452-63. PubMed ID: 17572039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids.
    Omil F; Lens P; Visser A; Hulshoff Pol LW; Lettinga G
    Biotechnol Bioeng; 1998 Mar; 57(6):676-85. PubMed ID: 10099247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of microbial activity in anaerobic and microaerobic digesters.
    Jenicek P; Celis CA; Koubova J; Pokorna D
    Water Sci Technol; 2011; 63(10):2244-9. PubMed ID: 21977645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of acetate, propionate, and butyrate on the thermophilic anaerobic degradation of propionate by methanogenic sludge and defined cultures.
    Van Lier JB; Grolle KC; Frijters CT; Stams AJ; Lettinga G
    Appl Environ Microbiol; 1993 Apr; 59(4):1003-11. PubMed ID: 8476278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic pathway for propionate utilization by phosphorus-accumulating organisms in activated sludge: 13C labeling and in vivo nuclear magnetic resonance.
    Lemos PC; Serafim LS; Santos MM; Reis MA; Santos H
    Appl Environ Microbiol; 2003 Jan; 69(1):241-51. PubMed ID: 12514001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei.
    de Bok FA; Stams AJ; Dijkema C; Boone DR
    Appl Environ Microbiol; 2001 Apr; 67(4):1800-4. PubMed ID: 11282636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-rate anaerobic treatment of wastewater at low temperatures.
    Lettinga G; Rebac S; Parshina S; Nozhevnikova A; van Lier JB; Stams AJ
    Appl Environ Microbiol; 1999 Apr; 65(4):1696-702. PubMed ID: 10103270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria.
    Rao AG; Ravichandra P; Joseph J; Jetty A; Sarma PN
    J Hazard Mater; 2007 Aug; 147(3):718-25. PubMed ID: 17324510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering Fe@C amendment on long-term anaerobic digestion of sulfate and propionate rich wastewater: Driving microbial community succession and propionate metabolism.
    Xie J; Lin R; Min B; Zhu J; Wang W; Liu M; Xie L
    Bioresour Technol; 2024 Aug; 406():130968. PubMed ID: 38876277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desulfobacca acetoxidans gen. nov., sp. nov., a novel acetate-degrading sulfate reducer isolated from sulfidogenic granular sludge.
    Oude Elferink SJ; Akkermans-van Vliet WM; Bogte JJ; Stams AJ
    Int J Syst Bacteriol; 1999 Apr; 49 Pt 2():345-50. PubMed ID: 10319454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of highly performant sulfate reducers from sulfate-rich environments.
    Hiligsmann S; Jacques P; Thonart P
    Biodegradation; 1998; 9(3-4):285-92. PubMed ID: 10022071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Online oxygen control for sulfide oxidation in anaerobic treatment of high-sulfate wastewater.
    Khanal SK; Huang JC
    Water Environ Res; 2006 Apr; 78(4):397-408. PubMed ID: 16749308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfate reduction at pH 5 in a high-rate membrane bioreactor: reactor performance and microbial community analyses.
    Bijmans MF; Dopson M; Peeters TW; Lens PN; Buisman CJ
    J Microbiol Biotechnol; 2009 Jul; 19(7):698-708. PubMed ID: 19652518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.