These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 10022073)

  • 1. Biotechnological possibilities for waste tyre-rubber treatment.
    Holst O; Stenberg B; Christiansson M
    Biodegradation; 1998; 9(3-4):301-10. PubMed ID: 10022073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic desulfurization of ground rubber with the thermophilic archaeon Pyrococcus furiosus--a new method for rubber recycling.
    Bredberg K; Persson J; Christiansson M; Stenberg B; Holst O
    Appl Microbiol Biotechnol; 2001 Jan; 55(1):43-8. PubMed ID: 11234957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dealing with emerging waste streams: used tyre assessment in Thailand using material flow analysis.
    Jacob P; Kashyap P; Suparat T; Visvanathan C
    Waste Manag Res; 2014 Sep; 32(9):918-26. PubMed ID: 25106533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-carbons from waste tyre rubber: An insight into structure and morphology.
    Maroufi S; Mayyas M; Sahajwalla V
    Waste Manag; 2017 Nov; 69():110-116. PubMed ID: 28818399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment and disposal of tyres: Two EU approaches. A review.
    Torretta V; Rada EC; Ragazzi M; Trulli E; Istrate IA; Cioca LI
    Waste Manag; 2015 Nov; 45():152-60. PubMed ID: 25943287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial detoxification of waste rubber material by wood-rotting fungi.
    Bredberg K; Andersson BE; Landfors E; Holst O
    Bioresour Technol; 2002 Jul; 83(3):221-4. PubMed ID: 12094797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The leaching of inorganic species from activated carbons produced from waste tyre rubber.
    San Miguel G; Fowler GD; Sollars CJ
    Water Res; 2002 Apr; 36(8):1939-46. PubMed ID: 12092568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycling waste vehicle tyres into crumb rubber and the transition to renewable energy sources: A comprehensive life cycle assessment.
    Tushar Q; Santos J; Zhang G; Bhuiyan MA; Giustozzi F
    J Environ Manage; 2022 Dec; 323():116289. PubMed ID: 36261991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress in used tyres management in the European Union: a review.
    Sienkiewicz M; Kucinska-Lipka J; Janik H; Balas A
    Waste Manag; 2012 Oct; 32(10):1742-51. PubMed ID: 22687707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the feasibility of a reuse scenario for textile fibres recovered from end-of-life tyres.
    Landi D; Gigli S; Germani M; Marconi M
    Waste Manag; 2018 May; 75():187-204. PubMed ID: 29454817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of steel fibres recovered from waste tyres as reinforcement in concrete: pull-out behaviour, compressive and flexural strength.
    Aiello MA; Leuzzi F; Centonze G; Maffezzoli A
    Waste Manag; 2009 Jun; 29(6):1960-70. PubMed ID: 19167204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycling of waste tyre rubber into oil absorbent.
    Wu B; Zhou MH
    Waste Manag; 2009 Jan; 29(1):355-9. PubMed ID: 18455384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of activated carbon from the char produced in the thermolysis of granulated scrap tyres.
    López FA; Centeno TA; Rodríguez O; Alguacil EJ
    J Air Waste Manag Assoc; 2013 May; 63(5):534-44. PubMed ID: 23786145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic chemical devulcanization of rubber vulcanizates in supercritical carbon dioxide and associated less eco-unfriendly approaches: A review.
    Gumede JI; Hlangothi BG; Woolard CD; Hlangothi SP
    Waste Manag Res; 2022 May; 40(5):490-503. PubMed ID: 33829913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial and enzymatic degradation of poly(cis-1,4-isoprene) rubber: Novel biotechnological applications.
    Andler R
    Biotechnol Adv; 2020 Nov; 44():107606. PubMed ID: 32758514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental impacts and leachate analysis of waste rubber incorporated in construction and road materials: A review.
    Mohajerani A; Kurmus H; Conti D; Cash L; Semcesen A; Abdurahman M; Rahman MT
    Sci Total Environ; 2022 Aug; 835():155269. PubMed ID: 35430184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on using crumb rubber in reinforcement of asphalt pavement.
    Mashaan NS; Ali AH; Karim MR; Abdelaziz M
    ScientificWorldJournal; 2014; 2014():214612. PubMed ID: 24688369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving rubber concrete by waste organic sulfur compounds.
    Chou LH; Lin CN; Lu CK; Lee CH; Lee MT
    Waste Manag Res; 2010 Jan; 28(1):29-35. PubMed ID: 19710121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermochemistry of Sulfur-Based Vulcanization and of Devulcanized and Recycled Natural Rubber Compounds.
    Cataldo F
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of activated carbons from waste tyres for low temperature NOx control.
    Al-Rahbi AS; Williams PT
    Waste Manag; 2016 Mar; 49():188-195. PubMed ID: 26856444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.