BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 10022894)

  • 1. In vivo chaperone activity of heat shock protein 70 and thermotolerance.
    Nollen EA; Brunsting JF; Roelofsen H; Weber LA; Kampinga HH
    Mol Cell Biol; 1999 Mar; 19(3):2069-79. PubMed ID: 10022894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hsp70 and Hsp40 chaperone activities in the cytoplasm and the nucleus of mammalian cells.
    Michels AA; Kanon B; Konings AW; Ohtsuka K; Bensaude O; Kampinga HH
    J Biol Chem; 1997 Dec; 272(52):33283-9. PubMed ID: 9407119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of physiological thermotolerance in MDCK monolayers: contribution of heat shock protein 70.
    Dokladny K; Wharton W; Lobb R; Ma TY; Moseley PL
    Cell Stress Chaperones; 2006; 11(3):268-75. PubMed ID: 17009600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermotolerant cells show an attenuated expression of Hsp70 after heat shock.
    Theodorakis NG; Drujan D; De Maio A
    J Biol Chem; 1999 Apr; 274(17):12081-6. PubMed ID: 10207033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of stress-induced intracellular sorting and chaperone function of Hsp27 (HspB1) in mammalian cells.
    Bryantsev AL; Kurchashova SY; Golyshev SA; Polyakov VY; Wunderink HF; Kanon B; Budagova KR; Kabakov AE; Kampinga HH
    Biochem J; 2007 Nov; 407(3):407-17. PubMed ID: 17650072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat shock-induced chaperoning by Hsp70 is enabled in-cell.
    Guin D; Gelman H; Wang Y; Gruebele M
    PLoS One; 2019; 14(9):e0222990. PubMed ID: 31557226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cycloheximide- and puromycin-induced heat resistance: different effects on cytoplasmic and nuclear luciferases.
    Michels AA; Kanon B; Konings AW; Bensaude O; Kampinga HH
    Cell Stress Chaperones; 2000 Jul; 5(3):181-7. PubMed ID: 11005376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of intra-organellar chaperone capacity for dealing with stress-induced protein unfolding.
    Hageman J; Vos MJ; van Waarde MA; Kampinga HH
    J Biol Chem; 2007 Nov; 282(47):34334-45. PubMed ID: 17875648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic changes in the localization of thermally unfolded nuclear proteins associated with chaperone-dependent protection.
    Nollen EA; Salomons FA; Brunsting JF; van der Want JJ; Sibon OC; Kampinga HH
    Proc Natl Acad Sci U S A; 2001 Oct; 98(21):12038-43. PubMed ID: 11572931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristic synthesis and redistribution of 70 kd heat shock protein in thermotolerant Chinese hamster V79 cells.
    Hatayama T; Taniguchi Y; Kano E; Furuya M; Hayashi S; Ohtsuka K; Wakatsuki T; Kitamura T; Imahara H
    Int J Hyperthermia; 1992; 8(1):121-30. PubMed ID: 1545158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperthermia classic article commentary: 'Re-induction of hsp70 synthesis: an assay for thermotolerance' by Gloria C. Li and Johnson Y. Mak, International Journal of Hyperthermia 1989;5:389-403.
    Li GC; Calderwood SK
    Int J Hyperthermia; 2009 Jun; 25(4):258-61. PubMed ID: 19670094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro effect of focused ultrasound or thermal stress on HSP70 expression and cell viability in three tumor cell lines.
    Hundt W; O'Connell-Rodwell CE; Bednarski MD; Steinbach S; Guccione S
    Acad Radiol; 2007 Jul; 14(7):859-70. PubMed ID: 17574136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat shock protein 70 from a thermotolerant Diptera species provides higher thermoresistance to Drosophila larvae than correspondent endogenous gene.
    Shilova VY; Zatsepina OG; Garbuz DG; Funikov SY; Zelentsova ES; Schostak NG; Kulikov AM; Evgen'ev MB
    Insect Mol Biol; 2018 Feb; 27(1):61-72. PubMed ID: 28796386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells.
    Laubitz D; Jankowska A; Sikora A; Woliński J; Zabielski R; Grzesiuk E
    Exp Physiol; 2006 Sep; 91(5):867-75. PubMed ID: 16728456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The diverse members of the mammalian HSP70 machine show distinct chaperone-like activities.
    Hageman J; van Waarde MA; Zylicz A; Walerych D; Kampinga HH
    Biochem J; 2011 Apr; 435(1):127-42. PubMed ID: 21231916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70.
    Alastalo TP; Hellesuo M; Sandqvist A; Hietakangas V; Kallio M; Sistonen L
    J Cell Sci; 2003 Sep; 116(Pt 17):3557-70. PubMed ID: 12865437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of in vivo HSP70 chaperone activity by Hip and Bag-1.
    Nollen EA; Kabakov AE; Brunsting JF; Kanon B; Höhfeld J; Kampinga HH
    J Biol Chem; 2001 Feb; 276(7):4677-82. PubMed ID: 11076956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bag1 functions in vivo as a negative regulator of Hsp70 chaperone activity.
    Nollen EA; Brunsting JF; Song J; Kampinga HH; Morimoto RI
    Mol Cell Biol; 2000 Feb; 20(3):1083-8. PubMed ID: 10629065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HSP70 interacts with ribosomal subunits of thermotolerant cells.
    Cornivelli L; Zeidan Q; De Maio A
    Shock; 2003 Oct; 20(4):320-5. PubMed ID: 14501945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Fas-associated factor 1 interacts with heat shock protein 70 and negatively regulates chaperone activity.
    Kim HJ; Song EJ; Lee YS; Kim E; Lee KJ
    J Biol Chem; 2005 Mar; 280(9):8125-33. PubMed ID: 15596450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.