These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 10024026)
1. Homology modeling and substrate binding study of human CYP4A11 enzyme. Chang YT; Loew GH Proteins; 1999 Feb; 34(3):403-15. PubMed ID: 10024026 [TBL] [Abstract][Full Text] [Related]
2. Identification of CYP4A11 as the major lauric acid omega-hydroxylase in human liver microsomes. Powell PK; Wolf I; Lasker JM Arch Biochem Biophys; 1996 Nov; 335(1):219-26. PubMed ID: 8914854 [TBL] [Abstract][Full Text] [Related]
3. Effects of steric bulk and conformational rigidity on fatty acid omega hydroxylation by a cytochrome P450 4A1 fusion protein. Bambal RB; Hanzlik RP Arch Biochem Biophys; 1996 Oct; 334(1):59-66. PubMed ID: 8837739 [TBL] [Abstract][Full Text] [Related]
4. Structural determination of the substrate specificities and regioselectivities of the rat and human fatty acid omega-hydroxylases. Hoch U; Zhang Z; Kroetz DL; Ortiz de Montellano PR Arch Biochem Biophys; 2000 Jan; 373(1):63-71. PubMed ID: 10620324 [TBL] [Abstract][Full Text] [Related]
5. Active site structure and substrate specificity of cytochrome P450 4A1: steric control of ligand approach perpendicular to heme plane. Bambal RB; Hanzlik RP Biochem Biophys Res Commun; 1996 Feb; 219(2):445-9. PubMed ID: 8605007 [TBL] [Abstract][Full Text] [Related]
6. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency. Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686 [TBL] [Abstract][Full Text] [Related]
7. Probing ligand binding modes of human cytochrome P450 2J2 by homology modeling, molecular dynamics simulation, and flexible molecular docking. Li W; Tang Y; Liu H; Cheng J; Zhu W; Jiang H Proteins; 2008 May; 71(2):938-49. PubMed ID: 18004755 [TBL] [Abstract][Full Text] [Related]
8. A three-dimensional protein model for human cytochrome P450 2D6 based on the crystal structures of P450 101, P450 102, and P450 108. de Groot MJ; Vermeulen NP; Kramer JD; van Acker FA; Donné-Op den Kelder GM Chem Res Toxicol; 1996; 9(7):1079-91. PubMed ID: 8902262 [TBL] [Abstract][Full Text] [Related]
9. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. Lüdemann SK; Lounnas V; Wade RC J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976 [TBL] [Abstract][Full Text] [Related]
10. Human fatty acid omega-hydroxylase, CYP4A11: determination of complete genomic sequence and characterization of purified recombinant protein. Kawashima H; Naganuma T; Kusunose E; Kono T; Yasumoto R; Sugimura K; Kishimoto T Arch Biochem Biophys; 2000 Jun; 378(2):333-9. PubMed ID: 10860550 [TBL] [Abstract][Full Text] [Related]
11. Analysis of four residues within substrate recognition site 4 of human cytochrome P450 3A4: role in steroid hydroxylase activity and alpha-naphthoflavone stimulation. Domanski TL; Liu J; Harlow GR; Halpert JR Arch Biochem Biophys; 1998 Feb; 350(2):223-32. PubMed ID: 9473295 [TBL] [Abstract][Full Text] [Related]
12. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain. Lee KW; Briggs JM Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of inhibitor-bound P450BM-3 reveals open conformation of substrate access channel. Haines DC; Chen B; Tomchick DR; Bondlela M; Hegde A; Machius M; Peterson JA Biochemistry; 2008 Mar; 47(12):3662-70. PubMed ID: 18298086 [TBL] [Abstract][Full Text] [Related]
14. Heme-coordinating analogs of lauric acid as inhibitors of fatty acid omega-hydroxylation. Lu P; Alterman MA; Chaurasia CS; Bambal RB; Hanzlik RP Arch Biochem Biophys; 1997 Jan; 337(1):1-7. PubMed ID: 8990261 [TBL] [Abstract][Full Text] [Related]
15. Molecular modelling of CYP4A subfamily members based on sequence homology with CYP102. Lewis DF; Lake BG Xenobiotica; 1999 Aug; 29(8):763-81. PubMed ID: 10553718 [TBL] [Abstract][Full Text] [Related]
17. Crystal structures of two aromatic hydroxylases involved in the early tailoring steps of angucycline biosynthesis. Koskiniemi H; Metsä-Ketelä M; Dobritzsch D; Kallio P; Korhonen H; Mäntsälä P; Schneider G; Niemi J J Mol Biol; 2007 Sep; 372(3):633-48. PubMed ID: 17669423 [TBL] [Abstract][Full Text] [Related]
18. Combining substrate dynamics, binding statistics, and energy barriers to rationalize regioselective hydroxylation of octane and lauric acid by CYP102A1 and mutants. Feenstra KA; Starikov EB; Urlacher VB; Commandeur JN; Vermeulen NP Protein Sci; 2007 Mar; 16(3):420-31. PubMed ID: 17322527 [TBL] [Abstract][Full Text] [Related]
19. Glu-320 and Asp-323 are determinants of the CYP4A1 hydroxylation regiospecificity and resistance to inactivation by 1-aminobenzotriazole. Dierks EA; Davis SC; Ortiz de Montellano PR Biochemistry; 1998 Feb; 37(7):1839-47. PubMed ID: 9485309 [TBL] [Abstract][Full Text] [Related]
20. A conservative amino acid substitution alters the regiospecificity of CYP94A2, a fatty acid hydroxylase from the plant Vicia sativa. Kahn RA; Le Bouquin R; Pinot F; Benveniste I; Durst F Arch Biochem Biophys; 2001 Jul; 391(2):180-7. PubMed ID: 11437349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]