BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 10024369)

  • 1. Spinal cord-evoked potentials and muscle responses evoked by transcranial magnetic stimulation in 10 awake human subjects.
    Houlden DA; Schwartz ML; Tator CH; Ashby P; MacKay WA
    J Neurosci; 1999 Mar; 19(5):1855-62. PubMed ID: 10024369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of stimulus intensity and voluntary contraction on corticospinal potentials following transcranial magnetic stimulation.
    Kaneko K; Kawai S; Fuchigami Y; Shiraishi G; Ito T
    J Neurol Sci; 1996 Jul; 139(1):131-6. PubMed ID: 8836984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical activity after stimulation of the corticospinal tract in the spinal cord.
    Costa P; Deletis V
    Clin Neurophysiol; 2016 Feb; 127(2):1726-1733. PubMed ID: 26679418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans.
    Calancie B; Alexeeva N; Broton JG; Suys S; Hall A; Klose KJ
    J Neurotrauma; 1999 Jan; 16(1):49-67. PubMed ID: 9989466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct comparison of corticospinal volleys in human subjects to transcranial magnetic and electrical stimulation.
    Burke D; Hicks R; Gandevia SC; Stephen J; Woodforth I; Crawford M
    J Physiol; 1993 Oct; 470():383-93. PubMed ID: 8068071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscarinic receptor blockade causes postcontraction enhancement in corticospinal excitability following maximal contractions.
    Dempsey LM; Kavanagh JJ
    J Neurophysiol; 2021 Apr; 125(4):1269-1278. PubMed ID: 33625939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Spinal cord evoked potential].
    Fukaya C; Katayama Y
    Masui; 2006 Mar; 55(3):322-9. PubMed ID: 16541781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predominant activation of I1-waves from the leg motor area by transcranial magnetic stimulation.
    Terao Y; Ugawa Y; Hanajima R; Machii K; Furubayashi T; Mochizuki H; Enomoto H; Shiio Y; Uesugi H; Iwata NK; Kanazawa I
    Brain Res; 2000 Mar; 859(1):137-46. PubMed ID: 10720623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of activation of corticospinal neurons and spinal motor neurons by magnetic and electrical transcranial stimulation in the lumbosacral cord of the anaesthetized monkey.
    Edgley SA; Eyre JA; Lemon RN; Miller S
    Brain; 1997 May; 120 ( Pt 5)():839-53. PubMed ID: 9183254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive stimulation of human corticospinal axons innervating leg muscles.
    Martin PG; Butler JE; Gandevia SC; Taylor JL
    J Neurophysiol; 2008 Aug; 100(2):1080-6. PubMed ID: 18509069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single motor unit recording technique for studying the differential activation of corticospinal volleys by transcranial magnetic stimulation.
    Terao Y; Ugawa Y; Hanajima R; Machii K; Furubayashi T; Mochizuki H; Enomoto H; Shiio Y; Uesugi H; Iwata NK; Kanazawa I
    Brain Res Brain Res Protoc; 2001 Apr; 7(1):61-7. PubMed ID: 11275525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of spinal cord excitability by subthreshold repetitive transcranial magnetic stimulation of the primary motor cortex in humans.
    Valero-Cabré A; Oliveri M; Gangitano M; Pascual-Leone A
    Neuroreport; 2001 Dec; 12(17):3845-8. PubMed ID: 11726806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial distribution of corticospinal potentials following transcranial electric and magnetic stimulation in human spinal cord.
    Kaneko K; Kawai S; Taguchi T; Fuchigami Y; Morita H; Ofuji A; Yonemura H
    J Neurol Sci; 1997 Oct; 151(2):217-21. PubMed ID: 9349679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corticospinal volleys evoked by anodal and cathodal stimulation of the human motor cortex.
    Burke D; Hicks RG; Stephen JP
    J Physiol; 1990 Jun; 425():283-99. PubMed ID: 2213580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower excitability of the corticospinal tract to transcranial magnetic stimulation during lengthening contractions in human elbow flexors.
    Sekiguchi H; Kimura T; Yamanaka K; Nakazawa K
    Neurosci Lett; 2001 Oct; 312(2):83-6. PubMed ID: 11595340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of corticospinal excitability during lengthening and shortening contractions in the first dorsal interosseus muscle of humans.
    Sekiguchi H; Kohno Y; Hirano T; Akai M; Nakajima Y; Nakazawa K
    Exp Brain Res; 2007 Apr; 178(3):374-84. PubMed ID: 17061090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle compound motor action potentials from esophago-vertebral electrical stimulation of the spinal cord in the normal awake man.
    Caccia MR; Valla PL; Osio M; Mangoni A
    Electromyogr Clin Neurophysiol; 1999 Dec; 39(8):493-501. PubMed ID: 10627936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans.
    Di Lazzaro V; Oliviero A; Profice P; Saturno E; Pilato F; Insola A; Mazzone P; Tonali P; Rothwell JC
    Electroencephalogr Clin Neurophysiol; 1998 Oct; 109(5):397-401. PubMed ID: 9851296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corticospinal inhibition of transmission in propriospinal-like neurones during human walking.
    Iglesias C; Nielsen JB; Marchand-Pauvert V
    Eur J Neurosci; 2008 Oct; 28(7):1351-61. PubMed ID: 18973562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced corticospinal responses in older compared with younger adults during submaximal isometric, shortening, and lengthening contractions.
    Škarabot J; Ansdell P; Brownstein CG; Hicks KM; Howatson G; Goodall S; Durbaba R
    J Appl Physiol (1985); 2019 Apr; 126(4):1015-1031. PubMed ID: 30730812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.