These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 10024489)

  • 1. Developmental changes in the physiology of hair cells.
    Eatock RA; Rüsch A
    Semin Cell Dev Biol; 1997 Jun; 8(3):265-275. PubMed ID: 10024489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postnatal development of type I and type II hair cells in the mouse utricle: acquisition of voltage-gated conductances and differentiated morphology.
    Rüsch A; Lysakowski A; Eatock RA
    J Neurosci; 1998 Sep; 18(18):7487-501. PubMed ID: 9736667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental acquisition of voltage-dependent conductances and sensory signaling in hair cells of the embryonic mouse inner ear.
    Géléoc GS; Risner JR; Holt JR
    J Neurosci; 2004 Dec; 24(49):11148-59. PubMed ID: 15590931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Differentiation Status of Hair Cells That Regenerate Naturally in the Vestibular Inner Ear of the Adult Mouse.
    González-Garrido A; Pujol R; López-Ramírez O; Finkbeiner C; Eatock RA; Stone JS
    J Neurosci; 2021 Sep; 41(37):7779-7796. PubMed ID: 34301830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional analysis of whole cell currents from hair cells of the turtle posterior crista.
    Brichta AM; Aubert A; Eatock RA; Goldberg JM
    J Neurophysiol; 2002 Dec; 88(6):3259-78. PubMed ID: 12466445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic currents and current-clamp depolarisations of type I and type II hair cells from the developing rat utricle.
    Lennan GW; Steinacker A; Lehouelleur J; Sans A
    Pflugers Arch; 1999 Jun; 438(1):40-6. PubMed ID: 10370085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological and physiological development of vestibular hair cells in the organ-cultured otocyst of the chick.
    Sokolowski BH; Stahl LM; Fuchs PA
    Dev Biol; 1993 Jan; 155(1):134-46. PubMed ID: 8416829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dominant-negative inhibition of M-like potassium conductances in hair cells of the mouse inner ear.
    Holt JR; Stauffer EA; Abraham D; Géléoc GS
    J Neurosci; 2007 Aug; 27(33):8940-51. PubMed ID: 17699675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological and developmental expression gradients of Kir2.1, an inward rectifier K+ channel, in spiral ganglion and cochlear hair cells of mouse inner ear.
    Ruan Q; Chen D; Wang Z; Chi F; Yin S; Wang J
    Dev Neurosci; 2008; 30(6):374-88. PubMed ID: 18854645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model for mammalian cochlear hair cell differentiation in vitro: effects of retinoic acid on cytoskeletal proteins and potassium conductances.
    Helyer R; Cacciabue-Rivolta D; Davies D; Rivolta MN; Kros CJ; Holley MC
    Eur J Neurosci; 2007 Feb; 25(4):957-73. PubMed ID: 17331193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potassium channel subunit K
    Martin HR; Lysakowski A; Eatock RA
    bioRxiv; 2024 Aug; ():. PubMed ID: 38045305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental changes in two voltage-dependent sodium currents in utricular hair cells.
    Wooltorton JR; Gaboyard S; Hurley KM; Price SD; Garcia JL; Zhong M; Lysakowski A; Eatock RA
    J Neurophysiol; 2007 Feb; 97(2):1684-704. PubMed ID: 17065252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium- and calmodulin-dependent inactivation of calcium channels in inner hair cells of the rat cochlea.
    Grant L; Fuchs P
    J Neurophysiol; 2008 May; 99(5):2183-93. PubMed ID: 18322004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elementary properties of Kir2.1, a strong inwardly rectifying K(+) channel expressed by pigeon vestibular type II hair cells.
    Zampini V; Masetto S; Correia MJ
    Neuroscience; 2008 Sep; 155(4):1250-61. PubMed ID: 18652879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental expression of Ca(v)1.3 (alpha1d) calcium channels in the mouse inner ear.
    Hafidi A; Dulon D
    Brain Res Dev Brain Res; 2004 Jun; 150(2):167-75. PubMed ID: 15158080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of Potassium and Cation Channels in Hippocampal Abnormalities of Embryonic Ts65Dn and Tc1 Trisomic Mice.
    Stern S; Segal M; Moses E
    EBioMedicine; 2015 Sep; 2(9):1048-62. PubMed ID: 26501103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion conductances related to development of repetitive firing in mouse retinal ganglion neurons in situ.
    Rothe T; Jüttner R; Bähring R; Grantyn R
    J Neurobiol; 1999 Feb; 38(2):191-206. PubMed ID: 10022566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-gated calcium channel currents in type I and type II hair cells isolated from the rat crista.
    Bao H; Wong WH; Goldberg JM; Eatock RA
    J Neurophysiol; 2003 Jul; 90(1):155-64. PubMed ID: 12843307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium current expression during postnatal development of rat outer hair cells.
    Oliver D; Plinkert P; Zenner HP; Ruppersberg JP
    Pflugers Arch; 1997 Nov; 434(6):772-8. PubMed ID: 9306011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of an inward rectifier channel (IKir) found in avian vestibular hair cells: cloning and expression of pKir2.1.
    Correia MJ; Wood TG; Prusak D; Weng T; Rennie KJ; Wang HQ
    Physiol Genomics; 2004 Oct; 19(2):155-69. PubMed ID: 15316115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.