BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 10024562)

  • 21. Glutathione modulates the toxicity of, but is not a biologically relevant reductant for, the Pseudomonas aeruginosa redox toxin pyocyanin.
    Muller M
    Free Radic Biol Med; 2011 Apr; 50(8):971-7. PubMed ID: 21255639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells.
    Rada B; Lekstrom K; Damian S; Dupuy C; Leto TL
    J Immunol; 2008 Oct; 181(7):4883-93. PubMed ID: 18802092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct oxidation of 2',7'-dichlorodihydrofluorescein by pyocyanin and other redox-active compounds independent of reactive oxygen species production.
    O'Malley YQ; Reszka KJ; Britigan BE
    Free Radic Biol Med; 2004 Jan; 36(1):90-100. PubMed ID: 14732293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Premature cellular senescence induced by pyocyanin, a redox-active Pseudomonas aeruginosa toxin.
    Muller M
    Free Radic Biol Med; 2006 Dec; 41(11):1670-7. PubMed ID: 17145555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis.
    Caldwell CC; Chen Y; Goetzmann HS; Hao Y; Borchers MT; Hassett DJ; Young LR; Mavrodi D; Thomashow L; Lau GW
    Am J Pathol; 2009 Dec; 175(6):2473-88. PubMed ID: 19893030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scavenging of neutrophil-derived superoxide anion by 1-hydroxyphenazine, a phenazine derivative associated with chronic Pseudomonas aeruginosa infection: relevance to cystic fibrosis.
    Muller M
    Biochim Biophys Acta; 1995 Dec; 1272(3):185-9. PubMed ID: 8541351
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specific activity of alpha1proteinase inhibitor and alpha2macroglobulin in human serum: application to insulin-dependent diabetes mellitus.
    Bristow CL; Di Meo F; Arnold RR
    Clin Immunol Immunopathol; 1998 Dec; 89(3):247-59. PubMed ID: 9837695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox-independent activation of NF-kappaB by Pseudomonas aeruginosa pyocyanin in a cystic fibrosis airway epithelial cell line.
    Schwarzer C; Fu Z; Fischer H; Machen TE
    J Biol Chem; 2008 Oct; 283(40):27144-53. PubMed ID: 18682396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pseudomonas aeruginosa pyocyanin inactivates lung epithelial vacuolar ATPase-dependent cystic fibrosis transmembrane conductance regulator expression and localization.
    Kong F; Young L; Chen Y; Ran H; Meyers M; Joseph P; Cho YH; Hassett DJ; Lau GW
    Cell Microbiol; 2006 Jul; 8(7):1121-33. PubMed ID: 16819965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pseudomonas aeruginosa pyocyanin induces neutrophil death via mitochondrial reactive oxygen species and mitochondrial acid sphingomyelinase.
    Managò A; Becker KA; Carpinteiro A; Wilker B; Soddemann M; Seitz AP; Edwards MJ; Grassmé H; Szabò I; Gulbins E
    Antioxid Redox Signal; 2015 May; 22(13):1097-110. PubMed ID: 25686490
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidation of thiols and modification of redox-sensitive signaling in human lung epithelial cells exposed to Pseudomonas pyocyanin.
    Ahmad IM; Britigan BE; Abdalla MY
    J Toxicol Environ Health A; 2011; 74(1):43-51. PubMed ID: 21120747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular responses of A549 alveolar epithelial cells to serially collected Pseudomonas aeruginosa from cystic fibrosis patients at different stages of pulmonary infection.
    Hawdon NA; Aval PS; Barnes RJ; Gravelle SK; Rosengren J; Khan S; Ciofu O; Johansen HK; Høiby N; Ulanova M
    FEMS Immunol Med Microbiol; 2010 Jul; 59(2):207-20. PubMed ID: 20528926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new method for the determination of alpha1-protease inhibitor (alpha1-antitrypsin) phenotypes based on the formation of alpha1-protease inhibitor allele product-elastase complexes.
    Baumstark JS; Lee CT; Luby RJ
    Biochim Biophys Acta; 1976 Sep; 446(1):287-300. PubMed ID: 10000
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanograss sensor for selective detection of Pseudomonas aeruginosa by pyocyanin identification in airway samples.
    Alatraktchi FA; Dimaki M; Støvring N; Johansen HK; Molin S; Svendsen WE
    Anal Biochem; 2020 Mar; 593():113586. PubMed ID: 31981486
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of Pseudomonas aeruginosa secreted virulence factors reduces lung inflammation in CF mice.
    Sandri A; Ortombina A; Boschi F; Cremonini E; Boaretti M; Sorio C; Melotti P; Bergamini G; Lleo M
    Virulence; 2018; 9(1):1008-1018. PubMed ID: 29938577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection.
    Sharp D; Gladstone P; Smith RB; Forsythe S; Davis J
    Bioelectrochemistry; 2010 Feb; 77(2):114-9. PubMed ID: 19666245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pyocyanin and its precursor phenazine-1-carboxylic acid increase IL-8 and intercellular adhesion molecule-1 expression in human airway epithelial cells by oxidant-dependent mechanisms.
    Look DC; Stoll LL; Romig SA; Humlicek A; Britigan BE; Denning GM
    J Immunol; 2005 Sep; 175(6):4017-23. PubMed ID: 16148150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of pyocyanin in Pseudomonas aeruginosa infection.
    Lau GW; Hassett DJ; Ran H; Kong F
    Trends Mol Med; 2004 Dec; 10(12):599-606. PubMed ID: 15567330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anticancer effects of pyocyanin on HepG2 human hepatoma cells.
    Zhao J; Wu Y; Alfred AT; Wei P; Yang S
    Lett Appl Microbiol; 2014 Jun; 58(6):541-8. PubMed ID: 24461061
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pseudomonas aeruginosa sodA and sodB mutants defective in manganese- and iron-cofactored superoxide dismutase activity demonstrate the importance of the iron-cofactored form in aerobic metabolism.
    Hassett DJ; Schweizer HP; Ohman DE
    J Bacteriol; 1995 Nov; 177(22):6330-7. PubMed ID: 7592406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.