These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10025610)

  • 61. Effects of tiaprofenic acid (Surgam) on cartilage proteoglycans in the rabbit joint immobilisation model.
    Meyer-Carrive I; Ghosh P
    Ann Rheum Dis; 1992 Apr; 51(4):448-55. PubMed ID: 1586241
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A triphasic analysis of negative osmotic flows through charged hydrated soft tissues.
    Gu WY; Lai WM; Mow VC
    J Biomech; 1997 Jan; 30(1):71-8. PubMed ID: 8970927
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and Is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism.
    Flannery CR; Hughes CE; Schumacher BL; Tudor D; Aydelotte MB; Kuettner KE; Caterson B
    Biochem Biophys Res Commun; 1999 Jan; 254(3):535-41. PubMed ID: 9920774
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Articular-cartilage proteoglycans in aging and osteoarthritis.
    Inerot S; Heinegård D; Audell L; Olsson SE
    Biochem J; 1978 Jan; 169(1):143-56. PubMed ID: 629741
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of diphosphonates on glycosaminoglycan synthesis and proteoglycan aggregation in normal adult articular cartilage.
    Palmoski M; Brandt K
    Arthritis Rheum; 1978; 21(8):942-9. PubMed ID: 737018
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Observation of a 1H double quantum filtered signal of water in biological tissues.
    Tsoref L; Shinar H; Navon G
    Magn Reson Med; 1998 Jan; 39(1):11-7. PubMed ID: 9438431
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Contrast agent enhanced pQCT of articular cartilage.
    Kallioniemi AS; Jurvelin JS; Nieminen MT; Lammi MJ; Töyräs J
    Phys Med Biol; 2007 Feb; 52(4):1209-19. PubMed ID: 17264381
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Effect of oxaceprol on the synthesis and degradation in vitro of proteoglycans and proteins by calf articular cartilage explants].
    Riera H; Barbara A; Aprile F; Maheu E; Mitrovic D
    Rev Rhum Mal Osteoartic; 1990; 57(7-8):579-83. PubMed ID: 2281302
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Stimulation of proteoglycan synthesis by triamcinolone acetonide and insulin-like growth factor 1 in normal and arthritic murine articular cartilage.
    Verschure PJ; van der Kraan PM; Vitters EL; van den Berg WB
    J Rheumatol; 1994 May; 21(5):920-6. PubMed ID: 8064735
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Site-specific molecular diffusion in articular cartilage measured using fluorescence recovery after photobleaching.
    Leddy HA; Guilak F
    Ann Biomed Eng; 2003; 31(7):753-60. PubMed ID: 12971608
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modulation by transforming growth factor-beta 1 and interleukin-1 beta of proteoglycan release and chondrodisaccharide composition in porcine articular cartilage.
    Zanni M; Tamburro A; Santone I; Rotilio D
    Semin Thromb Hemost; 1994; 20(2):159-67. PubMed ID: 7997887
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Structure and stability of proteoglycan aggregates.
    Hardingham TE; Muir H
    Ann Rheum Dis; 1975 Dec; 34 Suppl 2():Suppl 26-8. PubMed ID: 25330573
    [No Abstract]   [Full Text] [Related]  

  • 73. Breakdown of proteoglycan and collagen induced in pig articular cartilage in organ culture.
    Dingle JT; Horsfield P; Fell HB; Barratt ME
    Ann Rheum Dis; 1975 Aug; 34(4):303-11. PubMed ID: 127555
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis.
    Guilak F; Ratcliffe A; Lane N; Rosenwasser MP; Mow VC
    J Orthop Res; 1994 Jul; 12(4):474-84. PubMed ID: 8064478
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Rhein reduces proteoglycan loss during the autolytic breakdown of cultured cartilage.
    Mian M; Benetti D; Rosini S; Fantozzi R
    Int J Tissue React; 1989; 11(3):117-22. PubMed ID: 2613456
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Degradation of proteoglycan in articular cartilage.
    Sandy JD; Brown HL; Lowther DA
    Biochim Biophys Acta; 1978 Nov; 543(4):536-44. PubMed ID: 31190
    [TBL] [Abstract][Full Text] [Related]  

  • 77. In vivo effects of naproxen on composition, proteoglycan metabolism, and matrix metalloproteinase activities in canine articular cartilage.
    Ratcliffe A; Azzo W; Saed-Nejad F; Lane N; Rosenwasser MP; Mow VC
    J Orthop Res; 1993 Mar; 11(2):163-71. PubMed ID: 8483029
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The distribution of aggregating proteoglycans in articular cartilage: comparison of quantitative immunoelectron microscopy with radioimmunoassay and biochemical analysis.
    Ratcliffe A; Fryer PR; Hardingham TE
    J Histochem Cytochem; 1984 Feb; 32(2):193-201. PubMed ID: 6363519
    [TBL] [Abstract][Full Text] [Related]  

  • 79. High frequency ultrasound assesses transient changes in cartilage under osmotic loading.
    Zatloukalova J; Raum K
    Math Biosci Eng; 2020 Aug; 17(5):5190-5211. PubMed ID: 33120548
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Electron microscopic analysis of articular cartilage proteoglycan degradation by growth plate enzymes.
    Buckwalter JA; Ehrlich MG; Armstrong AL; Mankin HJ
    J Orthop Res; 1987; 5(1):128-32. PubMed ID: 3819904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.