These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 10025654)

  • 1. In-vivo measurement of low energy photon emitters: room-temperature semiconductor diodes vs. large scintillators and germanium crystals.
    Genicot JL; Pommé S; Alzetta JP
    Health Phys; 1999 Mar; 76(3):288-99. PubMed ID: 10025654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room-temperature semiconductor detectors for in vivo monitoring of internal contamination.
    Genicot JL
    Environ Health Perspect; 1997 Dec; 105 Suppl 6(Suppl 6):1423-6. PubMed ID: 9467055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of IRD-WBC HPGe detection system for low energy photon emitters in lungs.
    Azeredo AM; Lourenço MC; Dantas AL; Dantas BM
    Radiat Prot Dosimetry; 2003; 105(1-4):483-5. PubMed ID: 14527013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classical microdosimetry in radiation protection dosimetry and monitoring.
    Waker AJ; Schrewe U; Burmeister J; Dubeau J; Surette RA
    Radiat Prot Dosimetry; 2002; 99(1-4):311-6. PubMed ID: 12194314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New technique using room temperature diodes for the direct assessment of internal contamination by low energy gamma-ray emitters.
    Genicot JL; Alzetta JP
    Appl Radiat Isot; 1997 Mar; 48(3):349-58. PubMed ID: 9116654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of a low energy Ge detector system for in vivo monitoring in the framework of ICRP 78 applications.
    Lopez MA; Navarro T
    Radiat Prot Dosimetry; 2003; 105(1-4):477-82. PubMed ID: 14527012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evaluation of germanium detectors employed for the measurement of radionuclides deposited in lungs using an experimental and Monte Carlo approach.
    Webb JL; Kramer GH
    Health Phys; 2001 Dec; 81(6):711-9. PubMed ID: 11725891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of an array of large-volume germanium detectors for whole-body counting.
    Palmer HE; Rieksts GA; Lynch TP
    Health Phys; 1991 Nov; 61(5):595-600. PubMed ID: 1661276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of PIN diodes as room temperature photon detectors.
    Bueno CC; Gonçalves JA; de Magalhães RR; Santos MD
    Appl Radiat Isot; 2004 Dec; 61(6):1343-7. PubMed ID: 15388131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Health physics aspects of neutron activated components in a linear accelerator.
    Guo S; Ziemer PL
    Health Phys; 2004 May; 86(5 Suppl):S94-S102. PubMed ID: 15069298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The reduction of limits of detection in in vivo counting of low-energy photon emitters by optimising the shape and size of detectors.
    Genicot JL; Geboers I; Damen A; Franck D; de Carlan L
    Radiat Prot Dosimetry; 2003; 105(1-4):457-62. PubMed ID: 14527008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of planar high-purity Ge detectors for in vivo measurement of low-energy photon emitters.
    Palmer HE; Rieksts G
    Health Phys; 1984 Oct; 47(4):569-78. PubMed ID: 6511400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of phoswich detectors using MCNPX and EGSNRC.
    Leone D; Breustedt B
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):402-6. PubMed ID: 21183546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Historical review of lung counting efficiencies for low energy photon emitters.
    Jeffers KL; Hickman DP
    Health Phys; 2014 Mar; 106(3):415-7. PubMed ID: 25208017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Monte Carlo simulation of photon counting efficiency for germanium detectors.
    Kamboj S; Kahn B
    Health Phys; 1996 Apr; 70(4):512-9. PubMed ID: 8617591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved x-ray spectroscopy with room temperature CZT detectors.
    Fritz SG; Shikhaliev PM; Matthews KL
    Phys Med Biol; 2011 Sep; 56(17):5735-51. PubMed ID: 21841213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Measurement of radiation energy and its application. V. Measurement of gamma-ray energy and its application. (1). Measurement of gamma-ray energy using Ge and NaI(Tl) detectors].
    Chisaka H
    Radioisotopes; 1990 Aug; 39(8):371-9. PubMed ID: 2236661
    [No Abstract]   [Full Text] [Related]  

  • 18. Spectral distribution of particle fluence in small field detectors and its implication on small field dosimetry.
    Benmakhlouf H; Andreo P
    Med Phys; 2017 Feb; 44(2):713-724. PubMed ID: 28032369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanodosimetry, from radiation physics to radiation biology.
    Grosswendt B
    Radiat Prot Dosimetry; 2005; 115(1-4):1-9. PubMed ID: 16381675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EFFICIENCY STUDY OF A LEGe DETECTOR SYSTEM FOR THE ASSESSMENT OF 241Am IN SKULL AT CIEMAT WHOLE BODY COUNTER.
    Pérez López B; Navarro JF; López Ponte MA; Nogueira P
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):231-6. PubMed ID: 26420903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.