These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 10026163)

  • 1. Internal electron transfer between hemes and Cu(II) bound at cysteine beta93 promotes methemoglobin reduction by carbon monoxide.
    Bonaventura C; Godette G; Tesh S; Holm DE; Bonaventura J; Crumbliss AL; Pearce LL; Peterson J
    J Biol Chem; 1999 Feb; 274(9):5499-507. PubMed ID: 10026163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper and the oxidation of hemoglobin: a comparison of horse and human hemoglobins.
    Rifkind JM; Lauer LD; Chiang SC; Li NC
    Biochemistry; 1976 Nov; 15(24):5337-43. PubMed ID: 187214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of electron transfer to coordinated dioxygen of oxyhemoglobins to yield peroxide and methemoglobin. Protein control of electron donation by aquopentacyanoferrate(II).
    Kawanishi S; Caughey WS
    J Biol Chem; 1985 Apr; 260(8):4622-31. PubMed ID: 3988729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-hydroxide exchange reactions at the catalytic site of heme-copper oxidases.
    Brändén M; Namslauer A; Hansson O; Aasa R; Brzezinski P
    Biochemistry; 2003 Nov; 42(45):13178-84. PubMed ID: 14609328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of electron transfer with proton transfer at heme a and Cu(A) (redox Bohr effects) in cytochrome c oxidase. Studies with the carbon monoxide inhibited enzyme.
    Capitanio N; Capitanio G; Minuto M; De Nitto E; Palese LL; Nicholls P; Papa S
    Biochemistry; 2000 May; 39(21):6373-9. PubMed ID: 10828951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox dependent interactions of the metal sites in carbon monoxide-bound cytochrome c oxidase monitored by infrared and UV/visible spectroelectrochemical methods.
    Dodson ED; Zhao XJ; Caughey WS; Elliott CM
    Biochemistry; 1996 Jan; 35(2):444-52. PubMed ID: 8555214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman investigation of the effects of copper binding to iron-mesoporphyrin.histidine-rich glycoprotein complexes.
    Larsen RW; Nunez DJ; Morgan WT; Muhoberac BB; Ondrias MR
    Biophys J; 1992 Apr; 61(4):1007-17. PubMed ID: 1581496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of reduced heme and heme/copper carbonmonoxy species.
    Kretzer RM; Ghiladi RA; Lebeau EL; Liang HC; Karlin KD
    Inorg Chem; 2003 May; 42(9):3016-25. PubMed ID: 12716196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrite reductase activity of heme and copper bound Aβ peptides.
    Nath AK; Ghosh C; Roy M; Seal M; Ghosh Dey S
    Dalton Trans; 2019 Jun; 48(21):7451-7461. PubMed ID: 31086893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand binding properties and structural studies of recombinant and chemically modified hemoglobins altered at beta 93 cysteine.
    Cheng Y; Shen TJ; Simplaceanu V; Ho C
    Biochemistry; 2002 Oct; 41(39):11901-13. PubMed ID: 12269835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoreduction of methemoglobin by irradiation in the near-ultraviolet region.
    Sakai H; Onuma H; Umeyama M; Takeoka S; Tsuchida E
    Biochemistry; 2000 Nov; 39(47):14595-602. PubMed ID: 11087415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of peroxynitrite interaction with ferric hemoglobin and identification of nitrated tyrosine residues. CO(2) inhibits heme-catalyzed scavenging and isomerization.
    Pietraforte D; Salzano AM; Scorza G; Marino G; Minetti M
    Biochemistry; 2001 Dec; 40(50):15300-9. PubMed ID: 11735412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heme structure of hemoglobin M Iwate [alpha 87(F8)His-->Tyr]: a UV and visible resonance Raman study.
    Nagai M; Aki M; Li R; Jin Y; Sakai H; Nagatomo S; Kitagawa T
    Biochemistry; 2000 Oct; 39(43):13093-105. PubMed ID: 11052661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoinduced carbon monoxide migration in a synthetic heme-copper complex.
    Fry HC; Cohen AD; Toscano JP; Meyer GJ; Karlin KD
    J Am Chem Soc; 2005 May; 127(17):6225-30. PubMed ID: 15853327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton and electron pathways in the bacterial nitric oxide reductase.
    Hendriks JH; Jasaitis A; Saraste M; Verkhovsky MI
    Biochemistry; 2002 Feb; 41(7):2331-40. PubMed ID: 11841226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Filling the catalytic site of cytochrome c oxidase with electrons. Reduced CuB facilitates internal electron transfer to heme a3.
    Jancura D; Antalik M; Berka V; Palmer G; Fabian M
    J Biol Chem; 2006 Jul; 281(29):20003-10. PubMed ID: 16704969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic characterization of carbon monoxide complexes generated for copper/topa quinone-containing amine oxidases.
    Hirota S; Iwamoto T; Tanizawa K; Adachi O; Yamauchi O
    Biochemistry; 1999 Oct; 38(43):14256-63. PubMed ID: 10571999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversal of copper(II)-induced methemoglobin formation by thiols.
    Smith RC; Reed VD; Webb TR
    J Inorg Biochem; 1993 Nov; 52(3):173-82. PubMed ID: 8254340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of human haemoglobin by copper. Mechanism and suggested role of the thiol group of residue beta-93.
    Winterbourn CC; Carrell RW
    Biochem J; 1977 Jul; 165(1):141-8. PubMed ID: 889569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic resolution of a tryptophan-radical intermediate in the reaction cycle of Paracoccus denitrificans cytochrome c oxidase.
    Wiertz FG; Richter OM; Ludwig B; de Vries S
    J Biol Chem; 2007 Oct; 282(43):31580-91. PubMed ID: 17761680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.