BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 10026257)

  • 21. Changes in the conformation of 5S rRNA cause alterations in principal functions of the ribosomal nanomachine.
    Kouvela EC; Gerbanas GV; Xaplanteri MA; Petropoulos AD; Dinos GP; Kalpaxis DL
    Nucleic Acids Res; 2007; 35(15):5108-19. PubMed ID: 17652323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing functions of the ribosomal peptidyl transferase center by nucleotide analog interference.
    Erlacher MD; Polacek N
    Methods Mol Biol; 2012; 848():215-26. PubMed ID: 22315072
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutational analysis of the donor substrate binding site of the ribosomal peptidyltransferase center.
    Saarma U; Spahn CM; Nierhaus KH; Remme J
    RNA; 1998 Feb; 4(2):189-94. PubMed ID: 9570318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro incorporation of eubacterial, archaebacterial and eukaryotic 5S rRNAs into large ribosomal subunits of Bacillus stearothermophilus.
    Hartmann RK; Vogel DW; Walker RT; Erdmann VA
    Nucleic Acids Res; 1988 Apr; 16(8):3511-24. PubMed ID: 2453840
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The tandem GTPase, Der, is essential for the biogenesis of 50S ribosomal subunits in Escherichia coli.
    Hwang J; Inouye M
    Mol Microbiol; 2006 Sep; 61(6):1660-72. PubMed ID: 16930151
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit.
    Thompson J; Kim DF; O'Connor M; Lieberman KR; Bayfield MA; Gregory ST; Green R; Noller HF; Dahlberg AE
    Proc Natl Acad Sci U S A; 2001 Jul; 98(16):9002-7. PubMed ID: 11470897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the function of E. coli 23S rRNA helix-loop 69 by mutagenesis.
    Liiv A; Karitkina D; Maiväli U; Remme J
    BMC Mol Biol; 2005 Jul; 6():18. PubMed ID: 16053518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ribosomal protein L3 bound to 23S precursor rRNA stimulates its maturation by Mini-III ribonuclease.
    Redko Y; Condon C
    Mol Microbiol; 2009 Mar; 71(5):1145-54. PubMed ID: 19154332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ribosome engineering reveals the importance of 5S rRNA autonomy for ribosome assembly.
    Huang S; Aleksashin NA; Loveland AB; Klepacki D; Reier K; Kefi A; Szal T; Remme J; Jaeger L; Vázquez-Laslop N; Korostelev AA; Mankin AS
    Nat Commun; 2020 Jun; 11(1):2900. PubMed ID: 32518240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Osmolytes stimulate the reconstitution of functional 50S ribosomes from in vitro transcripts of Escherichia coli 23S rRNA.
    Semrad K; Green R
    RNA; 2002 Apr; 8(4):401-11. PubMed ID: 11991636
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleotides in 23S rRNA protected by the association of 30S and 50S ribosomal subunits.
    Merryman C; Moazed D; Daubresse G; Noller HF
    J Mol Biol; 1999 Jan; 285(1):107-13. PubMed ID: 9878392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assembly of proteins and 5 S rRNA to transcripts of the major structural domains of 23 S rRNA.
    Ostergaard P; Phan H; Johansen LB; Egebjerg J; Ostergaard L; Porse BT; Garrett RA
    J Mol Biol; 1998 Nov; 284(2):227-40. PubMed ID: 9813114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An intact ribose moiety at A2602 of 23S rRNA is key to trigger peptidyl-tRNA hydrolysis during translation termination.
    Amort M; Wotzel B; Bakowska-Zywicka K; Erlacher MD; Micura R; Polacek N
    Nucleic Acids Res; 2007; 35(15):5130-40. PubMed ID: 17660192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The environment of 5S rRNA in the ribosome: cross-links to 23S rRNA from sites within helices II and III of the 5S molecule.
    Osswald M; Brimacombe R
    Nucleic Acids Res; 1999 Jun; 27(11):2283-90. PubMed ID: 10325415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loop IV of 5S ribosomal RNA has contacts both to domain II and to domain V of the 23S RNA.
    Dokudovskaya S; Dontsova O; Shpanchenko O; Bogdanov A; Brimacombe R
    RNA; 1996 Feb; 2(2):146-52. PubMed ID: 8601281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A sparsomycin-resistant mutant of Halobacterium salinarium lacks a modification at nucleotide U2603 in the peptidyl transferase centre of 23 S rRNA.
    Lázaro E; Rodriguez-Fonseca C; Porse B; Ureña D; Garrett RA; Ballesta JP
    J Mol Biol; 1996 Aug; 261(2):231-8. PubMed ID: 8757290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A 50S ribosomal subunit precursor particle is a substrate for the ErmC methyltransferase in Staphylococcus aureus cells.
    Champney WS; Chittum HS; Tober CL
    Curr Microbiol; 2003 Jun; 46(6):453-60. PubMed ID: 12732954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Base-pairing of 23 S rRNA ends is essential for ribosomal large subunit assembly.
    Liiv A; Remme J
    J Mol Biol; 1998 Feb; 276(3):537-45. PubMed ID: 9551095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystallization and preliminary X-ray crystallographic study of a 23S rRNA binding domain of the ribosomal protein L2 from Bacillus stearothermophilus.
    Nakashima T; Kimura M; Nakagawa A; Tanaka I
    J Struct Biol; 1998 Dec; 124(1):99-101. PubMed ID: 9931278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of nucleotide modifications in the yeast mitochondrial ribosome.
    Sirum-Connolly K; Mason TL
    Nucleic Acids Symp Ser; 1995; (33):73-5. PubMed ID: 8643404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.