BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 10026302)

  • 1. A novel endogenous inhibitor of phenoloxidase from Musca domestica has a cystine motif commonly found in snail and spider toxins.
    Daquinag AC; Sato T; Koda H; Takao T; Fukuda M; Shimonishi Y; Tsukamoto T
    Biochemistry; 1999 Feb; 38(7):2179-88. PubMed ID: 10026302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary structure of a potent endogenous dopa-containing inhibitor of phenol oxidase from Musca domestica.
    Daquinag AC; Nakamura S; Takao T; Shimonishi Y; Tsukamoto T
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2964-8. PubMed ID: 7708756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structures of the cis- and trans-Pro30 isomers of a novel 38-residue toxin from the venom of Hadronyche Infensa sp. that contains a cystine-knot motif within its four disulfide bonds.
    Rosengren KJ; Wilson D; Daly NL; Alewood PF; Craik DJ
    Biochemistry; 2002 Mar; 41(10):3294-301. PubMed ID: 11876637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, biophysical, and biological studies of wild-type and mutant psalmopeotoxins--anti-malarial cysteine knot peptides from Psalmopoeus cambridgei.
    Kamolkijkarn P; Prasertdee T; Netirojjanakul C; Sarnpitak P; Ruchirawat S; Deechongkit S
    Peptides; 2010 Apr; 31(4):533-40. PubMed ID: 20067814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CSTX-9, a toxic peptide from the spider Cupiennius salei: amino acid sequence, disulphide bridge pattern and comparison with other spider toxins containing the cystine knot structure.
    Schalle J; Kämpfer U; Schürch S; Kuhn-Nentwig L; Haeberli S; Nentwig W
    Cell Mol Life Sci; 2001 Sep; 58(10):1538-45. PubMed ID: 11693532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cystine knot structure of ion channel toxins and related polypeptides.
    Norton RS; Pallaghy PK
    Toxicon; 1998 Nov; 36(11):1573-83. PubMed ID: 9792173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of disulfide bridge pattern in omega-conopeptides.
    Chung D; Gaur S; Bell JR; Ramachandran J; Nadasdi L
    Int J Pept Protein Res; 1995; 46(3-4):320-5. PubMed ID: 8537186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Snail and spider toxins share a similar tertiary structure and 'cystine motif'.
    Narasimhan L; Singh J; Humblet C; Guruprasad K; Blundell T
    Nat Struct Biol; 1994 Dec; 1(12):850-2. PubMed ID: 7773771
    [No Abstract]   [Full Text] [Related]  

  • 9. Structural space of intramolecular peptide disulfides: Analysis of peptide toxins retrieved from venomous peptide databases.
    Govindu PCV; Chakraborty P; Dutta A; Gowd KH
    Comput Biol Chem; 2017 Jun; 68():194-203. PubMed ID: 28365475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding motifs induced and stabilized by distinct cystine frameworks.
    Tamaoki H; Miura R; Kusunoki M; Kyogoku Y; Kobayashi Y; Moroder L
    Protein Eng; 1998 Aug; 11(8):649-59. PubMed ID: 9749917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and isolation of endogenous insect phenoloxidase inhibitors.
    Tsukamoto T; Ichimaru Y; Kanegae N; Watanabe K; Yamaura I; Katsura Y; Funatsu M
    Biochem Biophys Res Commun; 1992 Apr; 184(1):86-92. PubMed ID: 1567460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Cystine Knot Is Responsible for the Exceptional Stability of the Insecticidal Spider Toxin ω-Hexatoxin-Hv1a.
    Herzig V; King GF
    Toxins (Basel); 2015 Oct; 7(10):4366-80. PubMed ID: 26516914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative folding of cystine-rich peptides vs regioselective cysteine pairing strategies.
    Moroder L; Besse D; Musiol HJ; Rudolph-Böhner S; Siedler F
    Biopolymers; 1996; 40(2):207-34. PubMed ID: 8785364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spider toxins comprising disulfide-rich and linear amphipathic domains: a new class of molecules identified in the lynx spider Oxyopes takobius.
    Vassilevski AA; Sachkova MY; Ignatova AA; Kozlov SA; Feofanov AV; Grishin EV
    FEBS J; 2013 Dec; 280(23):6247-61. PubMed ID: 24118933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disulfide bond structure of the AVR9 elicitor of the fungal tomato pathogen Cladosporium fulvum: evidence for a cystine knot.
    van den Hooven HW; van den Burg HA; Vossen P; Boeren S; de Wit PJ; Vervoort J
    Biochemistry; 2001 Mar; 40(12):3458-66. PubMed ID: 11297411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of phenoloxidase activity by high- and low-molecular-weight inhibitors from the larval hemolymph of Manduca sexta.
    Lu Z; Jiang H
    Insect Biochem Mol Biol; 2007 May; 37(5):478-85. PubMed ID: 17456442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteine-rich toxins from Lachesana tarabaevi spider venom with amphiphilic C-terminal segments.
    Kuzmenkov AI; Fedorova IM; Vassilevski AA; Grishin EV
    Biochim Biophys Acta; 2013 Feb; 1828(2):724-31. PubMed ID: 23088912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential comparison of peptides containing half-cystine residues from ovalbumins of six avian species.
    Sun Y; Hayakawa S
    Biosci Biotechnol Biochem; 2001 Dec; 65(12):2589-96. PubMed ID: 11826952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient enzymatic cyclization of an inhibitory cystine knot-containing peptide.
    Kwon S; Bosmans F; Kaas Q; Cheneval O; Conibear AC; Rosengren KJ; Wang CK; Schroeder CI; Craik DJ
    Biotechnol Bioeng; 2016 Oct; 113(10):2202-12. PubMed ID: 27093300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A common structural motif incorporating a cystine knot and a triple-stranded beta-sheet in toxic and inhibitory polypeptides.
    Pallaghy PK; Nielsen KJ; Craik DJ; Norton RS
    Protein Sci; 1994 Oct; 3(10):1833-9. PubMed ID: 7849598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.