These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 10026805)

  • 1. Membrane excitability in the neurohypophysis.
    Wilke RA; Ahern GP; Jackson MB
    Adv Exp Med Biol; 1998; 449():193-200. PubMed ID: 10026805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane excitability and secretion from peptidergic nerve terminals.
    Branchaw JL; Hsu SF; Jackson MB
    Cell Mol Neurobiol; 1998 Feb; 18(1):45-63. PubMed ID: 9524729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine D4 receptor mediated inhibition of potassium current in neurohypophysial nerve terminals.
    Wilke RA; Hsu SF; Jackson MB
    J Pharmacol Exp Ther; 1998 Feb; 284(2):542-8. PubMed ID: 9454795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. K+ channel modulation in rodent neurohypophysial nerve terminals by sigma receptors and not by dopamine receptors.
    Wilke RA; Lupardus PJ; Grandy DK; Rubinstein M; Low MJ; Jackson MB
    J Physiol; 1999 Jun; 517 ( Pt 2)(Pt 2):391-406. PubMed ID: 10332090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GABAA receptor activation and the excitability of nerve terminals in the rat posterior pituitary.
    Zhang SJ; Jackson MB
    J Physiol; 1995 Mar; 483 ( Pt 3)(Pt 3):583-95. PubMed ID: 7776245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel large-conductance Ca(2+)-activated potassium channel and current in nerve terminals of the rat neurohypophysis.
    Wang G; Thorn P; Lemos JR
    J Physiol; 1992 Nov; 457():47-74. PubMed ID: 1284313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A calcium-activated potassium channel causes frequency-dependent action-potential failures in a mammalian nerve terminal.
    Bielefeldt K; Jackson MB
    J Neurophysiol; 1993 Jul; 70(1):284-98. PubMed ID: 8395581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroactive steroids modulate GABAA receptors in peptidergic nerve terminals.
    Zhang SJ; Jackson MB
    J Neuroendocrinol; 1994 Oct; 6(5):533-8. PubMed ID: 7827623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single channel recordings of Nt- and L-type Ca2+ currents in rat neurohypophysial terminals.
    Wang X; Treistman SN; Lemos JR
    J Neurophysiol; 1993 Oct; 70(4):1617-28. PubMed ID: 8283218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Q-type Ca2+ channels in vasopressin secretion from neurohypophysial terminals of the rat.
    Wang G; Dayanithi G; Kim S; Hom D; Nadasdi L; Kristipati R; Ramachandran J; Stuenkel EL; Nordmann JJ; Newcomb R; Lemos JR
    J Physiol; 1997 Jul; 502 ( Pt 2)(Pt 2):351-63. PubMed ID: 9263915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tonic dopamine inhibition of L-type Ca2+ channel activity reduces alpha1D Ca2+ channel gene expression.
    Fass DM; Takimoto K; Mains RE; Levitan ES
    J Neurosci; 1999 May; 19(9):3345-52. PubMed ID: 10212294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct actions of nitric oxide on rat neurohypophysial K+ channels.
    Ahern GP; Hsu SF; Jackson MB
    J Physiol; 1999 Oct; 520 Pt 1(Pt 1):165-76. PubMed ID: 10517809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals.
    Jackson MB; Konnerth A; Augustine GJ
    Proc Natl Acad Sci U S A; 1991 Jan; 88(2):380-4. PubMed ID: 1988937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of secretory granule recruitment and exocytosis at rat neurohypophysial nerve endings.
    Giovannucci DR; Stuenkel EL
    J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):735-51. PubMed ID: 9051585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dopamine D(2) receptor modulation of K(+) channel activity regulates excitability of nucleus accumbens neurons at different membrane potentials.
    Perez MF; White FJ; Hu XT
    J Neurophysiol; 2006 Nov; 96(5):2217-28. PubMed ID: 16885524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depression by isoflurane of the action potential and underlying voltage-gated ion currents in isolated rat neurohypophysial nerve terminals.
    Ouyang W; Hemmings HC
    J Pharmacol Exp Ther; 2005 Feb; 312(2):801-8. PubMed ID: 15375177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice.
    De Schutter E; Bower JM
    J Neurophysiol; 1994 Jan; 71(1):375-400. PubMed ID: 7512629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of voltage- and Ca2+-activated conductances to GABA-induced depolarization in spider mechanosensory neurons.
    Panek I; Höger U; French AS; Torkkeli PH
    J Neurophysiol; 2008 Apr; 99(4):1596-606. PubMed ID: 18216223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevention of Ca(2+)-mediated action potentials in GABAergic local circuit neurones of rat thalamus by a transient K+ current.
    Pape HC; Budde T; Mager R; Kisvárday ZF
    J Physiol; 1994 Aug; 478 Pt 3(Pt 3):403-22. PubMed ID: 7965855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional dependence of Ca(2+)-activated K+ current on L- and N-type Ca2+ channels: differences between chicken sympathetic and parasympathetic neurons suggest different regulatory mechanisms.
    Wisgirda ME; Dryer SE
    Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2858-62. PubMed ID: 8146200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.