These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
462 related articles for article (PubMed ID: 10027761)
1. Nitric oxide-dependent and -independent mechanisms in the relaxation elicited by acetylcholine in fetal rat aorta. Martínez-Orgado J; González R; Alonso MJ; Marín J Life Sci; 1999; 64(4):269-77. PubMed ID: 10027761 [TBL] [Abstract][Full Text] [Related]
2. Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: mediation by nitric oxide and changes in apamin-sensitive K+ conductance. García-Pascual A; Labadía A; Jimenez E; Costa G Br J Pharmacol; 1995 Aug; 115(7):1221-30. PubMed ID: 7582549 [TBL] [Abstract][Full Text] [Related]
3. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries. Prieto D; Simonsen U; Hernández M; García-Sacristán A Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568 [TBL] [Abstract][Full Text] [Related]
5. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery. Zygmunt PM; Högestätt ED Br J Pharmacol; 1996 Apr; 117(7):1600-6. PubMed ID: 8730760 [TBL] [Abstract][Full Text] [Related]
6. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery. White R; Hiley CR Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801 [TBL] [Abstract][Full Text] [Related]
7. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF. Zygmunt PM; Plane F; Paulsson M; Garland CJ; Högestätt ED Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786 [TBL] [Abstract][Full Text] [Related]
8. Involvement of voltage-dependent potassium channels in the EDHF-mediated relaxation of rat hepatic artery. Zygmunt PM; Edwards G; Weston AH; Larsson B; Högestätt ED Br J Pharmacol; 1997 May; 121(1):141-9. PubMed ID: 9146898 [TBL] [Abstract][Full Text] [Related]
9. Apamin/charybdotoxin-sensitive endothelial K+ channels contribute to acetylcholine-induced, NO-dependent vasorelaxation of rat aorta. Qiu Y; Quilley J Med Sci Monit; 2001; 7(6):1129-36. PubMed ID: 11687720 [TBL] [Abstract][Full Text] [Related]
10. Impairment of fetal endothelium-dependent relaxation in a rat model of preeclampsia by chronic nitric oxide synthase inhibition. Martínez-Orgado J; González R; Alonso MJ; Salaices M J Soc Gynecol Investig; 2004 Feb; 11(2):82-8. PubMed ID: 14980309 [TBL] [Abstract][Full Text] [Related]
11. Endothelium-dependent relaxation of small arteries from essential hypertensive patients: mechanisms and comparison with normotensive subjects and with responses of vessels from spontaneously hypertensive rats. Deng LY; Li JS; Schiffrin EL Clin Sci (Lond); 1995 Jun; 88(6):611-22. PubMed ID: 7543395 [TBL] [Abstract][Full Text] [Related]
12. Endothelium-dependent relaxation by substance P in human isolated omental arteries and veins: relative contribution of prostanoids, nitric oxide and hyperpolarization. Wallerstedt SM; Bodelsson M Br J Pharmacol; 1997 Jan; 120(1):25-30. PubMed ID: 9117094 [TBL] [Abstract][Full Text] [Related]
13. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery. Dong H; Waldron GJ; Cole WC; Triggle CR Br J Pharmacol; 1998 Mar; 123(5):821-32. PubMed ID: 9535009 [TBL] [Abstract][Full Text] [Related]
14. Role of K+ channels and sodium pump in the vasodilation induced by acetylcholine, nitric oxide, and cyclic GMP in the rabbit aorta. Ferrer M; Marín J; Encabo A; Alonso MJ; Balfagón G Gen Pharmacol; 1999 Jul; 33(1):35-41. PubMed ID: 10428014 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms of nitric oxide-independent relaxations induced by carbachol and acetylcholine in rat isolated renal arteries. Jiang F; Li CG; Rand MJ Br J Pharmacol; 2000 Jul; 130(6):1191-200. PubMed ID: 10903955 [TBL] [Abstract][Full Text] [Related]
16. Differential actions of anandamide, potassium ions and endothelium-derived hyperpolarizing factor in guinea-pig basilar artery. Zygmunt PM; Sørgård M; Petersson J; Johansson R; Högestätt ED Naunyn Schmiedebergs Arch Pharmacol; 2000 May; 361(5):535-42. PubMed ID: 10832608 [TBL] [Abstract][Full Text] [Related]
17. Endothelium-dependent nitric oxide and hyperpolarization-mediated venous relaxation pathways in rat inferior vena cava. Raffetto JD; Yu P; Reslan OM; Xia Y; Khalil RA J Vasc Surg; 2012 Jun; 55(6):1716-25. PubMed ID: 22209615 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms of NO-resistant relaxation induced by acetylcholine in rabbit renal arteries. Kwon SC J Vet Med Sci; 2001 Jan; 63(1):37-40. PubMed ID: 11217060 [TBL] [Abstract][Full Text] [Related]
19. Endothelium-derived hyperpolarizing factor and potassium use different mechanisms to induce relaxation of human subcutaneous resistance arteries. McIntyre CA; Buckley CH; Jones GC; Sandeep TC; Andrews RC; Elliott AI; Gray GA; Williams BC; McKnight JA; Walker BR; Hadoke PW Br J Pharmacol; 2001 Jul; 133(6):902-8. PubMed ID: 11454664 [TBL] [Abstract][Full Text] [Related]
20. Apamin-sensitive, non-nitric oxide (NO) endothelium-dependent relaxations to bradykinin in the bovine isolated coronary artery: no role for cytochrome P450 and K+. Drummond GR; Selemidis S; Cocks TM Br J Pharmacol; 2000 Feb; 129(4):811-9. PubMed ID: 10683206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]